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Abstract

This thesis presents a power simulation of a MIPS MicroAptiv UP Core implemented as
a virtual ASIC prototype using Taiwan Semiconductor Manufacturing Company(TSMC)
65 nm CMOS technology. Based on the MIPS instruction set program data is generated
and introduced in the simulation by means of initialization files. Before the simulation,
technology specific SRAM modules are integrated into the MIPS core. Two different pro-
grams are used for power characterization. The first program performs frequent memory
accesses by means of load/store word instructions, while the second program is a loop
which operates on registers only and mainly increments addresses. The simulation is
based on a virtual prototype which is generated by synthesis and place & route includ-
ing post-layout parasitic extractions. The stimuli for the power extraction is generated
via gate-level simulation and forwarded to the power calculation engine. The effect of X-
propagation on gate-level simulations is avoided by modifying the address-related state-
ments in the execution data path module, which use another form of 2 to 1 multiplexer,
setting the output to zero for all input signals even with an initial value of ’x’ without
changing the functionality. Finally, the consumed power is provided by reports gener-
ated by the power simulation engine. The memory-centric program consumes 35.39mW
of internal power using instructions, which is 0.73mW less than the internal power of the
register-centric program, and the overall average power is also lower by almost 0.7mW.
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1 INTRODUCTION

The MIPS32® microAptiv™ UP core is a high-performance, low-power, 32-bit MIPS RISC
processor core intended for custom system-on-silicon applications. The core is designed for
semiconductor manufacturing companies, ASIC developers, and system OEMs who want to
rapidly integrate their custom logic and peripherals with a high-performance RISC proces-
sor. The microAptiv UP core is fully synthesizable to allow maximum flexibility. It is highly
portable across processes and can easily be integrated into full system-on-silicon designs.
The microAptiv UP core implements the MIPS Architecture in a 5-stage pipeline. It includes
support for the micro-MIPS™ ISA, an Instruction Set Architecture with optimized MIPS32
16-bit and 32-bit instructions that provide a significant reduction in code size with a perfor-
mance equivalent to MIPS32.
In this thesis, the primary modules, their basic function, register set, and instruction set are
introduced in the second chapter. The reason for describing these modules in this text is to
help the reader to understand the architecture and operation mode of the MIPS core. In ad-
dition the given information is also applied in exemplary assembly programs. Some other
modules not mentioned in this text can be found in [1]. As an additional note, the figures
in this chapter are captured from the Vivado software, while in chapters 5 and 6 Cadence
software is used. In the third chapter, three different algorithms for the virtual-to-physical
translation are presented. This includes the "translation of the unmapped segment," LTB,
and FMT approach. Chapter 4 shows the exact process for the translation of the unmapped
segment. In addition, the five relevant stages for the execution of the lw instruction are also
explained. The two different processes for the translation between data virtual address and
instruction virtual address, and the process of read/write data are described in this chap-
ter which is also useful for finding undefined signals during gate-level-simulation in chapter
6. The next chapter focuses on replacing generic memory modules with technology specific
memories from TSMC and how to generate the program files to be loaded into the memory
cells during simulation. The RTL or functional simulation results before synthesis, floorplan,
and P&R process are briefly described. The instructions for defining timing constraints criti-
cal to the clock tree and the content of the constraints file are also presented in the synthesis
section. The last chapter introduces the basic setup of the gate-level-simulation. It also de-
scribes problems and results encountered during this simulation. Finally a comparison and
analysis of the results for the two cases of power simulation is given.

2 ARCHITECTURE OF THE MIPS

This chapter introduces the core, the register set, the instruction set, and the special microar-
chitecture of the MIPS processor. The remainder of this chapter introduces all components
of the MIPS model as well as the function of these components.
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2.1 BLOCK DIAGRAM OF THE CORE

The MIPSfpga core is freely available and has a MIPS32 microAptiv UP architecture. The main
parts of the MIPSfpga core are shown in the following block diagram illustrated in Figure 2.1.
The microAptiv UP core is designed with a 5-stage instruction pipeline. It includes support

Figure 2.1: Block diagram of MIPS32 microAptiv UP core [2]

for the microMIPS ISA, which is an instruction set architecture with optimized 16-bit and
32-bit instructions. The Instruction Decoder gets the actual instruction from the instruction
cache, which acts as a buffer memory between external memory and the core processor, and
is an additional hierarchy level of memory to access instructions faster. The Instruction De-
coder generates signals that interact with the Execution Unit to trigger the execution of the
decoded operation. The Execution Unit has a load/store architecture and is equipped with
a single-cycle ALU to perform logical, shift, and mathematical operations. In addition, it has
an autonomous multiply/divide unit. It also includes an Address Unit, which determines the
next Program Counter (PC) value by controlling address selections muxes and reacting on the
branch condition as well as the trap condition comparator. The 32-bit General Purpose Regis-
ters (GPR) are used for integer operations and address calculations. To minimize the context
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switching overhead during interrupt or exception processing one, three, seven or fifteen ad-
ditional shadow registers files can be added. The System Coprocessor unit provides system
interface signals, such as the system clock and reset. The MMU (Memory Management Unit),
which is connected to the instruction-, and data cache controller (I-Cache and D-Cache) and
also the Bus Interface Unit performs virtual-to-physical address translation and takes the in-
structions or data from the main memory when these data is not available in the caches. The
Bus Interface Unit to which the MMU is connected to allows the user to access memories and
memory-mapped I/O through an AHBLite bus. The Multiply & Divide Unit (MDU) performs
multiply/divide operations.

The MIPS architecture offers up to four different coprocessors (CP0-CP3). However, only the
CP0 coprocessor is mandatory, while the others are optional. In this thesis, only the CP0 (sys-
tem coprocessor) is used, which translates virtual addresses into physical addresses, manages
exceptions, and handles switches between kernel supervisor and users states. Furthermore,
the CP0 controls the cache subsystem and provides diagnostic control and error recovery
facilities. The CP1-CP3 coprocessor slots are usually reserved for the floating-point calcula-
tions.

2.2 PIPELINE MICROARCHITECTURE

Pipelining is used to improve sequential logic by splitting combinational logic blocks into
several smaller segments. In between the segments, registers are placed which store the seg-
ment outputs with every clock cycle and feed the inputs of the subsequent segment. By this
means the stability and the consistency of the logic operation can be secured and efficiency
and the processing speed can be increased. A five-stage instruction pipeline is applied in
the case of the MIPS microprocessor core. As shown in Table 2.1, the five stages are Fetch,
Decode, Execute, Memory and Writeback. The processor reads the instructions from the in-
struction memory during the Fetch stage. During the Decode phase, the fetched instruction
is decoded to define the sources of the operands in the register file and to produce control sig-
nals for the subsequent execution of the decoded instruction. While in the Execution phase,
the processor performs a computation using the resources available in its ALU. Data mem-
ory can be read or written by the processor in the Memory stage. The operation result can be
written by the processor to the register file in the Writeback stage.

IF ID EXE MEM WB
IF ID EXE MEM WB

IF ID EXE MEM WB

Table 2.1: Pipeline processor

In each stage the next instruction is taken over as soon as the processing of the current in-
struction is finished. Registers are required between each pipeline stage to hold the result of
the executed instruction. The results stored in these registers are used for processing the next
pipeline stage.
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2.3 MEMORY MAP

The microAptiv UP core provides a 32-bit address space and three modes of operation, namely
User mode, Kernel mode, and Debug mode. The processing mode influences translation of
virtual addresses to physical addresses, which the MMU performs. The translation process
happens before a request is sent to the cache controllers and the bus interface unit for exter-
nal memory access.

Figure 2.2: Memory map [1]

• User mode is applied during the execution of application programs.

• Kernel-mode is used for handling exceptions and operating system kernel functions,
including CP0 management and I/O device access.

• Debug mode is used during system bring-up and software development.

When a reset or another exception is accepted, the core uses Kernel mode, in which the soft-
ware can operate in the entire address space, and also the CP0 register. In User mode, only
part of the virtual address space from 0x0000_0000 to 0x7FFFF_FFFF is available. In the op-
posite to Kernel-mode, the CP0 functions can not be accessed. The remaining address space
from 0x8000_0000 to 0xFFFF_FFFF is only accessible to exceptions.
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Debug mode is entered by triggering the debug exception. In Debug mode, the same address
space and the CP0 registers are available as in Kernel mode. In segment kseg3, the core has
an additional segment dseg, which can be turned on or off.

2.4 AHB-LITE BUS

As shown in Figure 2.3, the available AHB-Lite interface consists of a 50MHz system clock
HCLK, a write enable signal HWRITE (“1”write,“0”read), an address signal bus HADDR [31:0],
and two separate read and write data buses HRDATA[31:0] and HWDATA[31:0]. The memories
and all peripherals are connected to the core through the AHB-Lite interface.

Figure 2.3: AHB-Lite Bus

The MIPSfpga processor core is the only MASTER connected to the AHB-Lite Bus. In addition,
three slaves RAM0, RAM1 and GPIOs are connected to the MASTER. Memory block RAM0
contains the boot code while memory block RAM1 contains the user code and application
data. During FPGA prototype the GPIO modules implement the connections to the LEDs,
switches, pushbuttons and the 7-segmemt displays available on the used Nexys4 DDR board.
For ASIC implementation, the RAM0 and RAM1 modules have to be adapted to the SRAM
modules provided by TSMC before functional simulation which is described in chapter 5.

In addition to the three slaves, an address decoder and a data multiplexer are also available
to generate the selection signals HSEL[2:0] based on the HADDR address and decide which
of the three slaves the read data bus HRDATA by means of a 3:1 multiplexer.

The corresponding virtual address of the RAM0 block holding the boot load is 0xbfc0_0000-
0xbfc1_fffc while the physical address is 0x1fc0_0000-1fc1_fffc. As for the RAM1, which con-
tains the user code, the virtual address and physical address is respectively 0x8000_0000-
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Virtual address Physical address Signal name Nexys4 DDR
0xbf80_0000 0x1f80_0000 IO_LEDR LEDs
0xbf80_0008 0x1f80_0008 IO_SW switches
0xbf80_000c 0x1f80_000c IO_PB U, D, L, R, C push buttons
0xbf80_0010 0x1f80_0010 SEGEN_N[7:0] AN[7:0]
0xbf80_0014 0x1f80_0014 SEG0_N[3:0] Digit 0 value
0xbf80_0018 0x1f80_0018 SEG1_N[3:0] Digit 1 value
0xbf80_001c 0x1f80_001c SEG2_N[3:0] Digit 2 value
0xbf80_0020 0x1f80_0020 SEG3_N[3:0] Digit 3 value
0xbf80_0024 0x1f80_0024 SEG4_N[3:0] Digit 4 value
0xbf80_0028 0x1f80_0028 SEG5_N[3:0] Digit 5 value
0xbf80_002c 0x1f80_002c SEG6_N[3:0] Digit 6 value
0xbf80_0030 0x1f80_0030 SEG7_N[3:0] Digit 7 value

Table 2.2: Memory addresses used during FPGA prototype on the Nexys4 DDR FPGA board

0x8003_fffc and 0x0000_0000-0003_fffc. The LEDs, switches, pushbuttons, the 7-segment dis-
plays, and enable signals for each digit are mapped to virtual memory addresses 0xbf80_0000-
0xbf80_0030, as shown in Table 2.2. The MMU on the MIPSfpga translates virtual addresses
used by the processor core into physical addresses, received by the AHB-Lite Bus.

2.4.1 CONNECTION BETWEEN EACH COMPONENT OF THE AHB-LITE BUS

The implementation schematic of the AHB-Lite bus components is shown in Figure 2.4. The
address register adrreg sends the address from the address signal bus HADDR [31:0] to the
ahbdecoder and to the memory block RAM0 and RAM1. The component writes data to the
register writereg and forwards the write enable signal from HWRITE to the slaves.

Figure 2.4: AHB components
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1 module ahb_decoder
2 (
3 input [31:0] HADDR ,
4 output [ 2:0] HSEL
5 );
6 // H_RAM_RESET_ADDR_Match =7’h7f;
7 // H_RAM_ADDR_Match =1’b0;
8 // H_LEDR_ADDR_Match =7’h7e;
9 // Decode based on most significant bits of the address

10 assign HSEL[0] = (HADDR[28:22] == ‘H_RAM_RESET_ADDR_Match);
11 assign HSEL[1] = (HADDR[28] == ‘H_RAM_ADDR_Match);
12 assign HSEL[2] = (HADDR[28:22] == ‘H_LEDR_ADDR_Match);
13 endmodule

Listing 1: Verilog Code for AHB Decoder

As shown in Listing 1, the bits of the selection signal HSEL [2], HSEL [0] depend on the bits
in HADDR [28:22] and HSEL [1] is derived from the HADDR [28] bit. The output HRDATA
[31:0] from the component GPIO contains the data from the peripheral, which is named
as HRDATA2 [31:0] in the Verilog module mipsfpga_ahb.v and is selected when the signal
HSEL [2:0] equals 3’b100. The HRDATA [31:0] from RAM0 contains the machine codes, which
is named as HRDATA0 [31:0] in the Verilog module mipsfpga_ahb.v and is selected when
HSEL[0] equals 1’b1. The read data bus HRDATA [31:0] and the signals HREADY, and HRESP
of the AHB-Lite bus block are fed to the block top, which corresponds to the Verilog module
m14k_top.v. The other outputs of the AHB-Lite bus block are used as outputs of the top-level
hierarchy module mipsfpga_sys.v, as shown in the following Figure 2.5.

Figure 2.5: Connection between the block AHB-Lite and Top
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2.5 REQUIRED LOGIC BLOCKS

The microAptiv™ UP core consists of both required and optional blocks. As shown in the
block diagram in Figure 2.6, the frames shown in white of the block diagram are mandatory
blocks and are always used for the proper execution of instructions. The areas shown in grey
of the block diagram are optional blocks. The use of these blocks relies on the needs of the
specific implementation targeting a respective application. The following subsections intro-
duce the mandatory blocks of the microAptiv UP processor core and their function.

Figure 2.6: Mandatory and optional blocks in microAptiv UP core [1]

2.5.1 BUS INTERFACE UNIT

The bus interface unit m14k_biu acts as the interface between the microAptiv UP processor
core and the outside blocks. Read/write requests from the cache controller are transmitted
to the BIU. The requests are arbitrated and transformed to bus transactions according to the
AMBA-3 AHB-lite protocol [1].

2.5.2 CACHE CONTROLLER

The caches sizes, organizations, and set-associativity depends on the microAptiv UP core
configuration and the deployed data controllers. For example, the size of the data cache can
be 2 Kbytes, and the set-associative of the data cache is defined as 2-way, whereas the size
of the instruction cache can be 8 Kbytes and the set-associative of the instruction cache is
defined as 4-way. The CPU core can reach each cache in a single processor cycle. Also, each
cache has its 32-bit data path, and the core can access both caches in the same pipeline clock
cycle. A one-line fill buffer is included in each cache controller and managed accordingly.
The fill buffer collects the data to be written to the cache and can be accessed in parallel to
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the cache. The data can be bypassed and written back to the core [1]. After the virtual-to-
physical translation in the m14k_mmu module, the most significant bits [31:10] of the in-
struction physical address is merged with parts of the offset [9:2], originating from the exe-
cution module m14k_edp, in the instruction cache controller m14k_icc, and the addressed
instructions are read from the AHB module and transmitted through the cache control mod-
ule. In the data cache controller m14k_dcc, the physical data address from the instructions
like lw or sw is processed in the same way. However, the offset is defined by another sig-
nal which also originates from the m14k_edp module. Addressed data is transferred from the
memory block RAM0 through the data cache controller module to the core. The exact process
for both modules is introduced in chapter 4.

2.5.3 MASTER PIPELINE CONTROL

The master pipeline control module m14k_mpc receives the machine code from the instruc-
tion cache controller and sends it to the block decoder m14k_mpc_dec in the MPC. This
block decodes the instructions and extracts the register addresses of the operands, and for-
wards them to the general-purpose-register (GPR) module. The block m14k_mpc_ctl gen-
erates most of the control signals which are used during the execution stage in the module
MPC.

2.5.4 EXECUTION DATA PATH

The execution data path (m14k_edp) module is the execution unit of the CPU. On reset, the
processor begins in kernel mode and jumps to the reset vector at address 0xbfc00000 which
is the first generated virtual address after reset in the execution data path module. In this
module the virtual address which points to the next instruction to be fetched is also calcu-
lated. Basically, the module executes the instructions which have been received from the
m14k_mpc module. It receives the data for load instructions asserted on the read data signal
HRDATA of the AHB-Lite bus interface. It also generates the data for the store instructions,
which is set to the write data signal HWDATA. The function of the implemented modules like
the ALU is described as a set of several assignments in the Verilog code.

2.5.5 MEMORY MANAGEMENT UNIT

The MMU in the microAptiv UP processor core translates virtual addresses to physical ad-
dresses before request are sent to the cache controllers for tag comparison or to the bus
interface unit for an external memory reference. This translation is a feature for operating
systems which manage the physical memory in a way that it accommodates multiple tasks
active in the same memory, so that they operate on the same virtual address space but in
different locations in physical memory. Other features handled by the MMU are protected
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memory areas and the definition of cache protocols [1]. The MMU is translation lookaside
buffer (TLB) based by default and has three address translation buffers:

• 16 or 32 dual-entry full associate Joint TLB(JTLB)

• 4-entry fully associate Instruction micro TLB(ITLB)

• 4-entry fully associate Data micro TLB(DTLB)

In the following, these three buffers are introduced one after another. A 16 or 32 dual- entry,
fully associative Joint TLB, implemented by the microAptiv UP processor core, maps 32 or 64
virtual pages to their corresponding physical addresses. The upper bits of the virtual address
are compared with each of the entries in the tag portion of the JTLB structure to translate
virtual addresses and the corresponding Address Space Identifier (ASID) into physical ad-
dresses. Since both instruction and data virtual addresses are translated in the same way the
structure is called "Joint" TLB.
In order to reduce the overall size, the JTLB is formed in page entry pairs. Two correspond-
ing physical data entries of each virtual tag form the even odd page entry. The highest order
virtual address bit is used for the selection of the two data entries. Because of the page size,
the page-pair basis is variable. The bit for the even/odd selection and the address bit for the
comparison are not the same during TLB lookup. Figure 2.7 shows the contents of one of

Figure 2.7: JTLB Entry ( tag and data ) [1]

the dual-entries in the JTLB. The tag entry consists of the Virtual Page Number divided by
2 (VPN2). Bits 31:25 are always included in the TLB lookup comparison. Bit 24:13 are set
by the page mask value, which defines the page size by masking the proper VPN2 bits. The
page mask value also decides which bits determine the selection of the even-odd page frame
number(PFN0-PFN1). As for the 4KB page size, the virtual address bit [12] determines the
page choice. The second part of this entry is the global bit. The entry is global to the whole
processor when G is set. Furthermore, it also means that the ASID is not included in the com-
parison. The last 8 bits form the AISD. The address-space for each process is associated with
the TLB entries through ASID. PFN0 and PFN1 are the upper bits of the physical address. The
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Name Number Use

$0 0 the constant value 0

$at 1 assumbly temporary

$v0-$v1 2-3 procedure return values

$a0-$a3 4-7 procedure arguments

$t0-$t7 8-15 temporary variables

$s0-$s7 16-23 saved variables

$t8-$t9 24-25 temporary variables

$k0-$k1 26-27 operating system (OS) temporaries

$gp1 28 global pointer

$sp 29 stack pointer

$fp 30 frame pointer

$ra 31 procedure return address

Table 2.3: MIPS register set

remaining data entries are not described in detail. The ITLB performs the memory address
translation for the instruction. When the ITLB cannot translate the address, the JTLB tries to
finish translating of the address in the following clock cycle. The translated address is copied
into the ITLB after successful execution, and the ITLB can resume operation again [1]. Un-
like the ITLB, the DTLB applies a faster translation for Load/Store addresses which works in
parallel to the JTLB. A DTLB miss and a JTLB hit effects a DTLB reload in the same cycle. The
process of the virtual-to-physical address translaion is described in more detail in chapter 3.

2.6 REGISTER SET

The MIPS architecture contains 32 registers ($0, $1,. . . , $31), the program counter (pc), and
two special registers Hi and Lo to store the result of multiplications and divisions. These two
special registers cannot be used directly, but they are only accessible through two instructions
mfhi (move from Hi) and mflo (move from Lo). The results of multiplications and divisions
can be longer than 32 bits. With multiplications the most significant bits are placed in the Hi
register, and the least significant bits are placed in the Lo register. Division operations put the
quotient in the Lo and the remainder in the Hi register.

The first register $0 contains the constant value 0. Since this register is read-only, it should
be used only as a source operand and is ineffective as the destination operand. The return
address of a function or service routine should be stored in the last register $ra. The other 30
registers and the convention regarding their usage are listed in Table 2.3.
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2.7 INSTRUCTION SET

The Instruction set of the MIPS architecture follows the RISC (Reduced Instruction Set Com-
puter) principle. RISC computer use only simple instruction with fewer cycles per instruction
(CPI) than a CISC (Complex Instruction Set Computer). In this section, the function and the
format of the instruction set is explained.

2.7.1 FUNCTIONAL INSTRUCTIONS

Instructions have four different kinds of functional groups:

• CPU Load & Store Instructions.

• Arithmetic Logic Operation (add, sub, and, or...).

• Jump & Branch.

2.7.1.1 CPU Load and Store Instructions

All instructions have a width of 32 bits. Data is organized in words of 4 Bytes (32 Bit), half-
words of 2 Bytes (16 Bit), and bytes (8 Bit) which can be stored from registers to memory or
oppositely be loaded from memory to registers. Memory is accessible through dedicated load
and store instructions, such as lw, sw. The address consists of two parts. The first part of the
address is stored in a source register “rs”, the second part is given as constant offset in the
instruction. The addressed data will be stored in a destination register “rd” . For example, the
LHU/LH instruction loads a half-word either unsigned by filling the most significant bits with
zeros or sign-extended by filling the most significant bits with the respective sign bits. A list
of load store instructions is given in Table 2.4.

Mnemonic Instruction Function

lb rd, of (rs) Load Byte rd=mem[rs+of]

lbu rd, of (rs) Load Byte Unsigned rd=mem[rs+of]

lh rd, of (rs) Load Halfword rd= mem[rs+of]

lhu rd, of (rs) Load Halfword Unsigned rd= mem[rs+of]

lw rd, of (rs) Load Word rd= mem[rs+of]

sb rs, of (rt) Store Byte mem[rt+of] = rs[7:0]

sh rs, of (rt) Store Halfword mem[rt+of] = rs[15:0]

sw rs, of (rt) Store Word mem[rt+of] = rs

Table 2.4: Load and Store instructions
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2.7.1.2 Arithmetic and Logic Operations

The MIPS architecture has different kinds of arithmetic instructions, including add, sub, div,
mult. Some instructions come with an “i” or an “u” are at the end of the mnemonic code to
indicate special modes. “i” means that the respective instruction is used with an immediate
which is a 16-bit constant operator in combination with data stored in the source register “rs”.
“u” indicates an unsigned instruction. The rest of the instructions use the operator rt (reg-
ister target) and rs (register source), which can be dynamically changed in the program. The
results are stored in the destination register (rd) after the execution of every instruction. At-
tention should be paid to division and multiplication instructions, which use specific register
lo and hi to store the results as mentioned above.

Mnemonic Instruction Function

add rd, rs, rt
adds two registers and
store result in a register

rd= rs+rt

addi rd, rs, im

adds a register and a
sign-extended immedi-
ate and store result in a
register

rd= rs+im

addu rd, rs, rt
adds two registers and
stores the result in a reg-
ister unsigned

rd= rs+rt

div rs, rt
divides rs by rt and stores
the quotient in lo and the
remainder in hi

lo=rs/rt
hi=rs%rt

sub rd, rs, rt
substrates two registers
and stores result in a reg-
ister

rd= rs-rt

subu rd, rs, rt
substrates two registers
and stores result in a reg-
ister unsigned

rd= rs-rt

mult rs, rt
multiplies rs by rt and
stores the result in lo

hi=(rs*rt)[63:32]
lo=(rs*rt)[31:0]

Table 2.5: Load and Store instructions

Logical operation like “and”, “or”, “xor”, and “nor” operate bit-by-bit on two source registers.
The result is written in the destination register “rd”. However, a “Not” instruction does not
exist. Instead, the “Not” instruction is implemented by using a “Nor” instruction in combina-
tion with the zero register $0. As shown in Table 2.5, logical operations can also be operated
on immediates using instructions “andi”, “ori”, “xori”.

13



Mnemonic Instruction Function

and rd, rs, rt
Ands bitwise two regis-
ters and stores the result
in a register

rd=rs & rt

andi rd, rs, im

ands bitwise a register
and an immediate value
and stores the result in a
register

rd=rs & im

or rd, rs, rt
Ors two registers bitwise
logical and stores the re-
sult in a register

rd=rs | rt

ori rd, rs, im

Ors a register and an
immediate value bitwise
and stores the result in a
register

rd= rs | im

xor rd, rs, rt
Exclusive or of two regis-
ters. Results are stored in
a register

rd= rs ∧ rt

xori rd, rs, im

Bitwise exclusive or of a
register and an imme-
diate value. Results is
stored in a register

rd= rs ∧ im

Table 2.6: Logical operations

Shift Instructions can move each digit in a register left or right by the amount of bits given in
the parameter “shamt”. Normal shift instructions are “sll” (shift left logical), “srl” (shift right
logical), and “sra” (shift right arithmetic). Shift right arithmetic “sra” means that the most sig-
nificant bits are not filled with zero but with the sign bit of the initial value. A mnemonic code
that ends on “v”, such as “sllv” (shift left logical variable), “srlv” (shift right logical variable),
“srav” (shift right arithmetic variable) means that the amount of bit positions to be shifted is
defined dynamically in a register.
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Mnemonic Instruction Function

sll rd, rs, a

Shifts a register value left by
the amount of bits defined
in the instruction and stores
the result in register rd

rd = rs «a

sllv rd, rs, rt

Shifts a register value left by
the amount of bits defined
in the register rt and stores
the result in register rd

rd = rs «rt

sra rd, rs, a

Shifts a register value right
by the amount of bits de-
fined in the instruction and
stores the result in register
rd

rd = rs »a

srav rd, rs, rt

Shifts a register value right
by the amounts of bits de-
fined in the register rt and
stores the result in register
rd

rd = rs »rt

srl rd, rs, a

Shifts a register value right
by the amount of bits de-
fined in the instruction and
stores the value in register rd

rd = rs »a

srlv rd, rs, rt

Shifts a register value right
by the amount of bits de-
fined in register rt and stores
the value in register rd

rd = rs »rt

Table 2.7: Shift operations

2.7.1.3 Jump and Branch Instructions

The PC (Program Counter) is the pointer holding the memory address of the present instruc-
tion and is updated to point to the next sequential instruction to execute. Conditional Control
Instructions (branch) change the PC based on the evaluation of conditions. Unconditional
Control Instructions (jump) always change the PC. The field in the branch instructions that
specifies the new instruction address is 16 bits wide and is given relative to the next (PC+4)
and not the current instruction address (PC) when the branch instruction is executed. In
jump instructions the size of the offset field is 26 bits. The offset is shifted left by two bits and
filled up with the four most significant bits of the PC.
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Mnemonic Instruction Function

beq rs, rt, of branch on equal pc = pc + ( of «2)

bne rs, rt, of branch on not equal pc = pc + ( of »2)

bgez rs, of
branch on greater than
or equal zero

pc = pc + ( of «2)

bgezal rs, of
branch on greater than
or equal to zero and link

pc = pc + ( of «2)
$ra= pc + 8

bgtz rs, of
branch on greater than
zero

pc = pc + ( of »2)

blez rs, of
branch on less than or
equal to zero

pc = pc + ( of »2)

bltz rs, of branch on less than zero pc = pc + ( of »2)

bltzal rs, of
branch on less than zero
and link

pc = pc + ( of
»2), $ra= pc + 8

j ad jump
pc = pc[31:30] &
(ad «2)

jal ad jump and link
pc= pc[31:30] &
(ad «2), $ra= pc
+8

jalr rd, rs jump and link register
pc= rs, $ra= pc
+ 8

Table 2.8: Shift operations

2.7.2 INSTRUCTIONS FORMAT

Instructions are written in binary code format and consist of a string of 1 s and 0 s. To identify
the instructions, the 32-bit binary code is divided into several fields to represent different
pieces of information. There are three different instruction formats: R-Type, I-Type, and J-
Type.

2.7.2.1 R-Type Instruction

R-Type instructions are short for register type and operate on three registers. rs and rt repre-
sent the source register and rd is the destination register. Table 2.9 shows the R-Type machine
instruction format.

The op field of R-Type-instructions is always filled with zeros, while the funct field determines
the operation. The shamt field is used in shift instruction to define the amount of bits to shift.
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For example, the add instruction is defined by the code 32 (1000002) and 0 (0000002) in the
opcode and the funct fields, respectively.

op rs rt rd shamt funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

Table 2.9: R-Type

rs, rt are source registers, rd is the destination register. The register numbers can be found in
Table 2.1. Table 2.10 shows the machine code for the R-type instructions add and sub.

Assembly Code Field Values
op rs rt rd shamt funct

add $s0, $s1, $s2 0 17 18 16 0 32
sub $t0, $t3, $t5 0 11 13 8 0 34

Machine Code
000000 10001 10010 10000 00000 100000
000000 01011 01101 01000 00000 100010

Table 2.10: R-Type examples

2.7.2.2 I-Type Instruction

The I-Type is short for immediate-type, and consists of two register operands and a 16-bit
“immediate” value. The naming of the instruction format indicates that it is much faster to
access constants given in the instruction than other available data sources. The 32-bit in-
struction has four fields: op, rs, rt, and imm. Table 2.11 shows the I-Type machine instruction
format.

The opcode determines the operation of I-Type. rs and imm are used as source operands.
For some instructions (addi and lw) rt is used as the destination, while for others instruc-
tions it is used as another source register. Table 2.12 shows the machine code for the I-Type
instructions addi and sw.

op rs rt imm
6 bits 5 bits 5 bits 16 bits

Table 2.11: I-Type
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Assembly Code Field Values
op rs rt imm

addi $s0, $s1, 5 8 17 16 5
sw $s1, 4($t1) 43 9 17 4

Machine Code
001000 10001 10000 0000000000000101
101011 01001 10001 0000000000000100

Table 2.12: I-Type examples

2.7.2.3 J-Type Instruction

J-Type is short for jump-type and is only used with jump instructions. This instruction con-
sists of an opcode and the 26-bit address operand, addr. Table 2.13 shows the J-Type machine
instruction format.

op addr
6 bits 26bits

Table 2.13: J-Type

3 VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION IN MMU

The translation from a virtual address to a physical address happens in the MMU, an interface
between the execution unit and the cache controller. The microAptiv UP core contains a
Translation Lookaside Buffer (TLB) or a simple Fixed Mapping Translation (FMT) style MMU
[1]. In this chapter, both approaches are described. In addition, one more special translation
method exists for unmapped segments.

3.1 VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION FOR UNMAPPED SEGMENTS

In this thesis, all physical addresses stay in the unmapped segment kseg1. Because the core
enters Kernel mode both at reset and when an exception is recognized, an unmapped seg-
ment does not use the TLB or the FMT approach for the virtual-to-physical address transla-
tion. Especially after reset, the availability of unmapped memory segments is essential be-
cause the TLB is not yet programmed to perform the translation[1]. The processor operates
in Kernel mode when the DM bit in the Debug register is 0, and one or more of the following
three bits in the Status register are set as follows UM=0, ERL=1, EXL=1. When a non-debug
exception is detected, EXL or ERL is set, and the processor enters Kernel mode.
In Kernel mode, when the most-significant three bits of the 32-bit virtual address is 0xb101,
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the 32-bit kseg1 virtual address space is selected. kseg1 is the 229 byte (32-MByte) kernel vir-
tual address space located at address 0xA000_0000 - 0xBFFF_FFFF. References to kseg1 are
unmapped, the selected physical address is defined by subtracting 0xA000_0000 from the
virtual address. In addition the caches are disabled for accesses to these addresses, and the
physical memory (or memory-mapped I/O device registers) are accessed directly [1].
The algorithmic translation process in the Verilog code is different from the subtraction men-
tioned above and is described in the next chapter. As mentioned before the virtual addresses
are 0xBFC0_0000 or 0xBFC0_0008. The binary code for the hexadecimal number B is 4’b1011,
and the upper three bits are identical to the condition. Figure 3.1 shows three important bits
for the determination of the kernel mode.

Figure 3.1: Bit ERL,EXL,DM

3.2 VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION IN TLB BASED MMU

In this subsection, the translation in TLB based memory management is discussed. Memory
translation happens in the MMU module of the micorAptiv UP processor core, the virtual-
to-physical address translation is implemented by the method introduced in the first section
of this chapter. Except for kseg0 and kseg1 for all other segments that are mapped or cached
TLB can be used.

When the translation process is activated, the virtual address from the processor can be the
same or different in comparison with the virtual address in the TLB. The situation where both
addresses are identical is called match or hit, and the first condition is that the VPN of the
address is the same as the VPN field of the entry. In addition, the two following conditions
are checked.

• The Global bit of both the even and odd pages of the TLB entry is set.

• The ASID field of the virtual address is the same as the ASID field of the TLB entry.

If all these conditions are not matched, the processor starts a TLB miss exception, and the
software refills the TLB from a page table of virtual/physical addresses in memory. As shown
in Figure 3.2, the page frame number (PFN) of the physical address comes from the PFN in
the TLB, if the virtual address is matched in the TLB. The offset does not pass through the TLB
and is connected with the PFN to form the physical address.

3.3 VIRTUAL-TO-PHYSICAL ADDRESS TRANSLATION IN FMT BASED MMU

An optional unit for the microAptiv UP core is the Fixed Mapping memory management unit
that is smaller than a full TLB and synthesized with less hardware effort. Unmapped memory
segments in a TLB implementation (kseg0 and kseg1) are translated identically by the FMT

19



Figure 3.2: Virtual-to-Physical address translation in TLB base MMU

MMU, and the translation result could be explained by using the same method as mentioned
in the first section for FMT. However, the applied process of both methods is not the same
[1]. With the FMT approach, a bitwise AND of the virtual address space with a fixed number
of 0x1FFF_FFFF is performed which means that the translated result of the virtual address
0xBF80_0004 is the physical address 0x1F80_0004 [3].

4 EXECUTION PROCESS OF THE MICROAPTIV™ UP PROCESSOR CORE

This chapter describes the execution process of the microAptiv up processor core. The first
section starts with a brief description of how mnemonic MIPS assembly code is translated
to machine code, on which the simulation results in this section are based. The simulation
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results generated by Modelsim are used to analyze the core’s operational logic. This section
also introduces the requirements of the following two chapters with respect to functional
and power simulations. In addition, the generation of the first physical address and the in-
crement of the addresses are described. One method for virtual to physical address transla-
tion through different processes in Verilog code is fixed simple translation, which has already
been analyzed in section 3.1. The pipeline stage for the lw instruction will be introduced in
the third section. Because of the different transformation steps from virtual to physical ad-
dresses during the execution of lw and sw instructions, both processes are introduced in the
fourth section. The last section will describe the Write signal HWDATA and the Read data
process from the AHB bus to the processor core. All connections of the following signals
can be found in the Verilog code. In each diagram and simulation results, the main signals
are shown. The following provides a detailed understanding of how addresses and data are
propagated within the processor, which is particularly essential for the verification process
described in Chapter 6 to detect undefined signals generated during the gate-level simula-
tion and to fix the issues causing them.

4.1 TEXT FILE CREATION FOR THE INITIALIZATION OF MIPSFPGA MEMORIES

The CodeScape MIPS SDK Essentials is available for software programming in C and Assem-
bly. The CodeScape package includes an installation of the OpenOCD software for on-chip
debugging. For compilation or assembly, the assembly programs and the Makefile from the
directory Codescape\ExamplePrograms\Assembly of the MIPSfpga project should be copied
to the directory in which the compile or assemble file main.c or main.s can be found. For the
compilation, the command make is used. By this means the file FPGA_Ram.elf in ELF (Ex-
ecutable and Link) format is generated. The text files which initialize the MIPSfpga memo-
ries are called ram_reset_init.txt and ram_program_init.txt. These memory initialization files
should be created to run a program during simulation with Modelsim and Xcelium. For this
purpose, the command shell cmd.exe is opened, and the user has to change to the respective
directory.

1 cd C:\...\ MIPSfpga\Codescape\ExamplePrograms\Scripts

Then, the memory files are generated by typing the following command into the command
prompt:

1 createMemfiles.bat ...\ Examplefolder

The generated text files ram_reset_init.txt and ram_program_init.txt contain the machine
instructions based on the compiled code in the Example folder in a format that allows the
block RAM initialization ( i.e, Codescape\ExamplePrograms\Examplefolder ). Moreover, a
MemoryFiles folder is created that contains the memory initialization files. In order to enable
simulation, the machine code, which start at @1D7 and contains the same amount of lines
as the initial program, needs to be copied from the initial text file ram_program_init.txt to
the file ram_reset_init.txt. These files can be used in Modelsim to simulate and study the
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processor execution process. However, this initial data does not match the format in TSMC
memory, which is described in detail in Chapter 5.

• Assembly Program
The following program is used for generating the initial machine code file. The pur-
pose of this code is to allow a clear analysis of how the store/load instructions (sw, lw)
are processed in the core, to understand the operating principle of the entire system.
The program first writes the addresses of the switches and pushbuttons into registers.
By using the lw instruction the data is read from the switches into registers. Through
the sw instruction the data is stored into the virtual address where the led register is
located. Finally, this process is looped through the beq instruction.

Figure 4.1: Assemble Program for the lw and sw instructions

• Initial Files
The following is the initial machine code which corresponds to the program shown
above and is used in the simulation. In order to verify that the machine code and the
MIPS assembly program are identical, the instruction like lw can be checked through
the I-type instruction format as is shown in table 4.1. The table below is the machine
code for the first lw instructions.

1 3c08 bf80
2 250c 0004
3 250d 0008
4 250e 000c
5 8daa 0000
6 8dcb 0000
7 ad0a 0000
8 ad8b 0000
9 1000 fffb

Listing 2: Initial machine code
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Assembly Code Field Values
op rs rt imm

lw $10, 0($13) 35 13 10 0
Machine Code

100011 01101 01010 0000000000000000

Table 4.1: Machine code for first lw instruction

4.2 INITIALIZATION OF THE PROCESSOR CORE

Figure 4.2 illustrates the generation process of the signal edp_cacheiva_i. In each rectangular
frame, there are short descriptions of the primary signal transmission process. In the module
some signals and parameters defined in the m14k_const.vh file are used in this initialization
process.

Figure 4.2: Diagram illustrating the calculation of the first physical address 32’hbfc00000

As shown in Figure 4.3, after reset, the signal au_reset_reg in module m14k_mpc_exe is set to
1. After two clock cycles, the signal cpz_bev (bootstrap exception vector) is set to 1. Then,
the processor works in kernel mode, which is unmapped and uncached. Both signals are
derived from the control signal mpc_evecsel=8’bx0x1010x which is an input signal of module
m14k_edp, and an output signal of the module m14k_mpc.
As shown in Figure 4.2, the signal preiva_p is assigned the value 32’hbfc00000 through the
10-to-1 multiplexer in the execution module m14k_edp based on the signal evec_e after one
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clock cycle, which is controlled by the signal mpc_evecsel and mainly consists of the defined
expression ’M14K_RESET_BASE=12’hbfc. After one cycle the signal edp_cacheiva_i receives
the data 32’hbfc00000 from the signal preiva_p.

Figure 4.3: Simulation of the signal edp_cacheiva_i

1 assign utlb_pah [‘M14K_PAH] =
2 {PAHW{utlb_bypass }} & pre_pah |
3 {PAHW{~ utlb_bypass & utlb0_match }} & utlb0_pah |
4 {PAHW{~ utlb_bypass & utlb1_match }} & utlb1_pah |
5 {PAHW{~ utlb_bypass & utlb2_match }} & utlb2_pah |
6 {PAHW{~ utlb_bypass & utlb3_match }} & utlb3_pah;

Listing 3: Multiplexer for utlb_pah

As shown in Figure 4.4, the signal edp_cacheiva_i=32’hbfc00000 is transformed into the 22 bit
kseg virtual to physical mapping signal i_kseg_addr=22’h07f000 through the control module
m14k_mmuc in the MMU module.

signal
Hex

Bi nar y
31_30 29_26 26_22 21_18 17_14 13_10

edp_cacheiva_i 2ff000 10 1111 1111 0000 0000 0000
cacheiva_trans 2ff000 10 1111 1111 0000 0000 0000

i_kseg_addr 07f000 00 0111 1111 0000 0000 0000

Table 4.2: Transformation from edp_cacheiva_i to i_kseg_addr

Table 4.2 shows that the signal i_kseg_addr [31:29] is transformed from 3’b101 to 3’b000, while
the other bits do not change. The transformed data is sent to the signal pre_ipah [31:10],
and it is connected with the input port pre_pah [31:10] of module m14k_tlb_itlb. There are
four entry blocks in this module with the same structure, but the output utlb_pah of the four
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blocks is not selected.
As shown in Listing 3, the signal PHAW, short for PAH width is 22, and the signal utlb_bypass is
1. PAHW{utlb_bypass}=22’h2FFFF is bitwise ANDed with the signal pre_pah to get the same
result stored in the signal pre_pah. The output mmu_ipah [31:10] receives the data from
pre_pah [31:10]. As shown in Figure 4.5, miss_tag_mx [31:10] getssdf the data from mmu_ipah

Figure 4.4: Diagram of the signal mmu_ipah[31:10]

[31:10]. It depends on the control signals ld_mtag and icop_active_m according to the sim-
ulation result in Figure 4.6. Table 4.3 shows that miss_tag_mx [31:10] and miss_idx_mx [9:2]
are the two components of the icc_exaddr [31:2] signal.The signal miss_tag_mx [31:10] cor-
responds to the upper bits of the physical address, and the signal miss_idx_mx [9:2], which
originates from the signal ival_i [9:2] = edp_ival_p [9:2] which is the offset of the physical ad-
dress.

signal
Hex

Bi nar y
31_30 29_26 26_22 21_18 17_14 13_10 9_6 5_2

miss_tag_mx 07f000 00 0111 1111 0000 0000 0000
miss_idx_mx 00 0000 0000

icc_exaddr 07f00000 00 0111 1111 0000 0000 0000 0000 0000

Table 4.3: icc_exaddr[31:2]={mixx_tag_mx[31:10],mixx_idx_mx[9:2]}

As shown in Figure 4.7, iaddr[31:4] gets parts of the virtual instruction address from icc_exaddr
[31:2], and the virtual address changes to 28’h1fc0_0000. The combination of iaddr [31:4] and
iword_nxt [1:0] is the main part of the signal HADDR [31:2], which depends on the rising
edge of the signal ireq. Another parts of the signal HADDR [1:0] is be_nxt_address [1:0]. At last
HADDR [31:0] gets the first physical address 32’h1fc00000. The generation of the next address
depends on the rising edge of the signal incsum_e_cond and on the increment of incsum_e.
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Figure 4.5: Diagram of the signal icc_exaddr[31:2]

Figure 4.6: Simulation of the signal HADDR

4.3 PIPELINE STAGES

The execution pipeline consists of five stages:

• Fetch

• Decode

• Execute

• Memory

• Write back

This section presents the implementation of each stage in the microAptiv up processor core.
As shown in Figure 4.8, the five stages and their main signals are described.

Each instruction follows a different process in these five stages.
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Figure 4.7: Diagram of the signal HADDR[31:0]

4.3.1 PIPELINE STAGES FOR LW INSTRUCTION

The last section describes the generation process of the first physical instruction address,
which is sent to the mipsfpga_ahb module. The decoder in the ahb_decoder module and the
multiplexer ahb_mux module select the respective slaves.
The Verilog code below shows the selection of each slave. When HADDR [28:22] equals to
H_RAM_RESET_ADDR_Match = 7’h7f = 7’b111_1111 and the other two conditions are not
true, then HSEL [2:0] equals to 3’b001. Based on HADDR [16:2] applied to the mipsfpga_ahb
_ram_reset block, the instructions are fetched sequentially and sent to the bus interface unit
module m14k_biu.

1 module ahb_mux
2 (
3 input [ 2:0] HSEL ,
4 input [31:0] HRDATA2 , HRDATA1 , HRDATA0 ,
5 output reg [31:0] HRDATA
6 );
7 always @(*)
8 casez (HSEL)
9 3’b??1: HRDATA = HRDATA0;

10 3’b?10: HRDATA = HRDATA1;
11 3’b100: HRDATA = HRDATA2;
12 default: HRDATA = HRDATA1;
13 endcase
14 endmodule

Listing 4: Verilog Code for AHB Selector

As shown in Figure 4.9, HRDATA [31:0] contains the instruction and is transmitted after one
cycle clock through the multiplexer in module m14k_biu. The instruction cache controller
module m14k_icc gets the output signal biu_datain [31:0] from the bus interface unit and
transmits it through several blocks like m14k_icc_umips_stub and other multiplexers. The
result of the process, as mentioned earlier, is icc_idata_i [31:0]. Next, the decode procedure
is described. The decoding process is implemented in the module master pipeline control
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Figure 4.8: Diagram of the pipeline [4]

m14k_mpc. The rs field of the instruction is icc_idata_i [25:21] which is kept in the signal
mpc_rega_i [8:0] after the selection of a multiplexer. The same process is implemented si-
multaneously in the rt field, and the result is kept in the signal mpc_regb_i [8:0]. For the lw
instruction the rt field is used. Both signals are sent to the register file module m14k_rf. The
rs field signal mpc_rega_i [4:0] is sent to the wire signal src_a_reg [4:0] after one cycle clock in
the module m14_rf. The register file outputs the register value onto the signal rf_adt. Another
output signal is rf_bdt, which is not used for this lw instruction, but for R-type or the sw in-
structions. The signal mpc_ir_e [31:0] gets the instruction data from icc_idata_i [31:0]. Part of
the signal mpc_ir_e [15:0] is the immediate field of the instruction, and the required offset for
the lw instruction is asserted to the signal dva_offset_e. The target register operand for the lw
instruction is stored in mpc_ir_e [20:16]. For R_type instructions, the destination operand is
stored in mpc_ir_e [15:11]. After the decode stage, the decoded instruction is executed. The
signal rf_adt is sent to the signal edp_abus_e. The signal aop_e gets the base address from
edp_abus_e through a multiplexer. The base address is added to the offset in dva_offset_e
to create the virtual address signal edp_dva_e which is subsequently translated to the phys-
ical address from which the memory is read. In the module m14k_mpc_ctl the destination
register signal dest_e gets the operand from mpc_ir_e [20:16]. In the memory stage, the vir-
tual address signal edp_dva_e is transformed in the m14k_mmu module to generate the fixed
physical address mmu_dpah which is transmitted as the signal dcc_exaddr through the mod-
ule m14k_dcc to the module m14k_biu. In this module, the signal daddr gets the physical
address for the lw instruction, and the wtaddr signals get the physical address for the sw
instruction. At last, the signal HADDR receives the physical address for the lw instruction
from the signal daddr. Through this physical address, the signal dcc_data_m in the module
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Figure 4.9: Simulation for the lw instruction

m14k_dcc receives the data from the input signals of the mipsfpga_ahb module and sends it
to edp_ldcpdata_w. At the same time, the signal dest_w gets the destination operand from
dest_e. At last, in the writeback stage, the signal mpc_dcba_w decides that edp_lacpdata_w is
the source signal for the writeback signal edp_wrdata_w. The store process of the sw instruc-
tion is introduced in the fourth section.

4.4 GENERATION PROCESS OF PHYSICAL ADDRESS FOR THE LW AND SW

INSTRUCTIONS

This section describes the generation process of the physical address for the lw and sw in-
structions. For the lw instruction, this process is only used when the data is taken from the
hardware input. If the data comes from the software input, it will be directly fetched at the be-
ginning. As shown in Figure 4.10, the signal edp_abus_e gets the instruction from the module
mipsfpga_ahb as described in the last section and is sent to the signal aop_e, which contains
the base address. The signal edp_dva_e gets the virtual address after addition to the address
offset, which is stored in dva_offset_e. The module m14k_mmu implements the transforma-
tion from the virtual address to the physical address. Table 4.3 lists the main signals that are
updated during the signal conversion. The subcomponent m14k_mmuc and subcomponent
m14k_dtlb are instances inside the m14k_mmu module. The input signal edp_dva_e [31:0] is
sent to the signal mmu_dva_e [31:0]. Through an instantiation, the output signal mmu_dva_e
from the subcomponent m14k_mmuc is connected with the input signal dva_trans. But this
input signal only accepts the bit from 31 to 10, and dva_trans [28:10] is used during the as-
signment of the output signal pre_dpah [31:10]. The remaining bits of pre_dpah [31:29] are
defined by the signal dva_trans_mapped [31:29], which originally connected to the signal
edp_dva_mapped_e. In the additional subcomponent m14k_dtlb, which is connected with
the next level subcomponent m14k_dtlb_utlb, the output signal mmu_dpah [31:10] receives
the translated address from pre_dpah, which results from an 5 inputs or-gate. The trans-
lated signal mmu_dpah[31:10] is transmitted to the module m14k_dcc and is combined with
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Figure 4.10: Diagram for lw and sw instructions

signal
Hex

Bi nar y
31_28 27_24 23_20 19_16 15_12 11_8 7_4 3_0

edp_dva_e bf800008 1011 1111 1000 0000 0000 0000 0000 0000
mmu_dva_e bf800008 1011 1111 1000 0000 0000 0000 0000 0000

signal
Hex

Bi nar y
31_30 29_26 26_22 21_18 17_14 13_10

dva_trans 2fe000 10 1111 1110 0000 0000 0000
dva_trans_mapped 0 00 0xxx

pre_dpah 07e000 00 0111 1110 0000 0000 0000
mmu_dpah 07e000 00 0111 1110 0000 0000 0000

Table 4.4: Transform from edp_dva_e to mmu_dpah

30



(a) the lw instruction

(b) the sw instruction

Figure 4.11: Simulation for the physical address of lw and sw instructions

the signal dcc_dval_m [19:2] to get dcc_pa [31:2]. The result is chosen by dcc_exaddr [31:2]
through a multiplexer. In module m14k_biu, the input signal dcc_exaddr [31:2] is used as
part of the wire signal daddr_w [31:2]. The remaining part of the wire signal is shown in Ta-
ble 4.4. The virtual address for the lw instruction is carried by the signal daddr[31:4], and
for the sw instruction, is carried by the signal wtaddr [31:4]. Both signals get the address from
daddr_w [31:4]. For both signals the bit[3:2] are defined by dword_nxt [1:0] and wrb_addr_wb
[1:0] respectively. As is shown in Figure 4.11 (a)-(b). They are selected according to the signal
dreq_a and wreq_a and are sent to the signal burst_addr_nxt [31:2]. At last, HADDR [31:0] gets
the physical address for lw and sw instructions.

4.5 GENERATION PROCESS OF THE SIGNAL HWDATA AND THE DATA FOR READ

One way to get the data from the periphery is the lw instruction. The data path is shown
in Figure 4.12. At first, the module mipsfpga_ahb gets the physical address. The input data
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signal
Hex

Bi nar y
31_28 27_24 23_20 19_18 17_14 13_10 9_6 5_2

mmu_dpah 1f8 0001 1111 1000
dcc_dval_m 00002 00 0000 0000 0000 0010

signal
Hex

Bi nar y
31_30 29_26 26_22 21_18 17_14 13_10 9_6 5_2

dcc_pa 07e00002 00 0111 1110 0000 0000 0000 0000 0010
dcc_exaddr 07e00002 00 0111 1110 0000 0000 0000 0000 0010

signal
Hex

Bi nar y
31_28 27_24 23_20 19_16 15_12 11_8 7_4 3_0

daddr_w[31:2] 1f800008 0001 1111 1000 0000 0000 0000 0000 10xx
daddr[31:4] 1f80000 0001 1111 1000 0000 0000 0000 0000
dword_nxt 2 10xx

wtaddr 1f80000 0001 1111 1000 0000 0000 0000 0000
dword_nxt 0 00xx

burst_addr_nxt 1f80000x 0001 1111 1000 0000 0000 0000 0000 xxxx
HADDR 1f80000x 0001 1111 1000 0000 0000 0000 0000 xxxx

Table 4.5: Transform from mmu_dpah to HADDR

signal is sent to the output signal HRDATA based on the address. The output signal is trans-
mitted to the module m14k_core, and the data is passed from the module m14k_biu through
m14k_dcc to m14k_edp without any change. Another way to get the data is as a constant in
the software. The data is then directly written in the program and is extracted during decod-
ing. During the execution of the sw instruction, the data will be written from the core to the
periphery through the AHB module. As shown in Figure 4.13, the output signal rf_bdt_e [31:0]
of the module m14k_rf, which carries the data, is sent to the input signal edp_bbus_e [31:0] of
the m14k_edp module. This data is transmitted from the module m14k_edp through module
m14k_dcc to m14k_biu without any change. At last, the data is sent to signal HWDATA and is
accepted by the periphery. This process is also the same for the execution of the sw instruc-
tion, when the data is stored in the memory through the signal HWDATA. In Figure 4.14 (a) &
(b) the signaling sequence which is executed in Figure 4.13 is shown.
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Figure 4.12: Diagram for data by using of the lw instruction

Figure 4.13: Diagram for HWDATA
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(a)

(b)

Figure 4.14: Simulation for HWDATA
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5 PHYSICAL IMPLEMENTATION

The above chapters introduce the overall structure of the used MIPS core and its internal op-
eration, This chapter presents the entire physical implementation flow in TSMC 65nm CMOS
technology, based on the Cadence tool like Genus, Innovus for synthesis and place & route
and Xcelium for simulation. Detailed descriptions and results are given for each implemen-
tation steps.

5.1 MEMORY MODULES EXCHANGE

Due to TSMC 65nm technology, provided by the manufacturer under NDA, the memories in
the MIPSfpga design need to be changed from Altera’s simple dual-port memory template
or from the generic Xilinx RAM model to the TSMC 65nm low leakage and low voltage dual-
port SRAM. There are two memory modules in the AHB Lite Bus interface which are based
on Altera’s memory module.

• ram_dual_port.v

• ram_reset_dual_port.v

Both memory modules RAM1 and RAM0 are mentioned in section 2.4, respectively. They use
the same memory block, RAMB36E1, which is a 36Kb-bit configurable synchronous block
Ram [5]. This element is used as a dual-port memory in both modules, cascaded to form a
large ram block. The code setting of the memory element RAMB36E1 has an 8-bit width for
data and a 6-bit width for address and a size of 64*8=512 bits. This memory block applies
the read-during-write behavior [6], where the read and write addresses are the same and the
output q does not get the data input d at the same clock cycle. The following listing shows the
Verilog code of the module ram_reset_dual_port.v.

1 module ram_reset_dual_port
2 #( parameter DATA_WIDTH =8, parameter ADDR_WIDTH =6)
3 (
4 input [(DATA_WIDTH -1):0] data ,
5 input [(ADDR_WIDTH -1):0] read_addr , write_addr ,
6 input we, clk ,
7 output reg [(DATA_WIDTH -1):0] q
8 );
9 reg [DATA_WIDTH -1:0] ram[2** ADDR_WIDTH -1:0];

10 initial
11 begin
12 $readmemh("ram_reset_init.txt", ram);
13 end
14 always @ (posedge clk)
15 begin
16 // Write
17 if (we)
18 ram[write_addr] <= data;
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19 q <= ram[read_addr];
20 end
21 endmodule

Listing 5: Verilog Code for RAMB36E1

Two more memory components are used in the cache, which are RAMB18E1, RAM128*1S [5]
and are only used as a single dual-port memory, as shown in the following Verilog code.

1 ‘timescale 1ns/10ps
2 module RAMB4K_S8(WE , EN , RST ,

CLK , ADDR , DI , DO);
3 input WE;
4 input EN;
5 input RST;
6 input CLK;
7 input [8:0] ADDR;
8 input [7:0] DI;
9 output[7:0] DO;

10 reg [7:0] mem[0:511];
11 reg [7:0] DO;
12 always @(posedge CLK) begin
13 DO <= #1 mem[ADDR];
14 if (EN)
15 begin
16 if (WE)
17 mem[ADDR] <=#1 DI;
18 end
19 end
20 endmodule

Listing 6: RAMB4K_S8.v

1 ‘timescale 1ns/10ps
2 module RAMB4K_S16(WE , EN , RST

, CLK , ADDR , DI, DO);
3 input WE;
4 input EN;
5 input RST;
6 input CLK;
7 input [7:0] ADDR;
8 input [15:0] DI;
9 output[15:0] DO;

10 reg [15:0] mem[0:255];
11 reg [15:0] DO;
12 always @(posedge CLK) begin
13 DO <= #1 mem[ADDR];
14 if (EN)
15 begin
16 if (WE)
17 mem[ADDR] <=#1 DI;
18 end
19 end
20 endmodule

Listing 7: RAMB4K_S16.v

Two types of TSMC memory modules can be found in Appendix A, which are tsdn65lpa65535x
16m32s with 16-bit input address and tsdn65lpll8192x16m16s with 13-bit input address. Their
input and output descriptions corresponding to Port A are shown in Table 5.1.
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Pin Type Description

AA[M-1:0] Input Address on Port A

DA[N-1:0] Input Data In on Port A

BWEBA[N-
1:0]

Input
Bit Write Enable Bar on Port
A(Active-Low)

WEBA Input
Write Enable Bar on Port A
(Write=0/Read=1)

CEBA Input
Chip Enable Bar on Port A
(Active-Low)

CLKA Input Clock on Port A

QA[N-1:0] Output
Data Out on Port A, and D/B-
WEB Compression Output for
Port A

Table 5.1: TSDN65LPLLDRSRAM pin descriptions for port A [7]

M-address bit, N-data bit

Since the upper modules require at least a 15-bit address and 32-bit data, two new SRAM
modules are needed, and an additional interface module shown in Appendix B is added to
match the memory tsdn65lpa65536x16m32s so that it can connect to the upper-level mod-
ule. The first is an additional interface module that generates signals corresponding to the in-
put and output ports of the new SRAMs and adds two SRAM instantiations. The code shown
in Appendix B corresponds to the instantiation of the memory blocks connected to the AHB
for the upper-level mipsfpga_ahb_ram_reset module, where "WEBA" corresponds to the "we"
signal of the original RAM, which is controlled by the opposite result of HWRITE ANDs HSEL.
The signal BWEBA and CEBA are low active. Also, since the data input and output ports of
the upper module are 32bit wide, it is necessary to divide the input HWDATA signal into two
parts corresponding to the port width of the new SRAM, and in order to output HRDATA, it
is necessary to add two additional wires HRDATA_1 and HRDATA_2 so that they can be com-
bined and passed to the data output signal HRDATA, which at last is connected to the output
of the new SRAM through the interface module. In addition, since the upper module address
signal is only 15 bits wide, while the memory needs 16 bits, it is necessary to add a 0 to the
highest bit for the complete address definition. In addition port B of the memory is not used.
However, it is essential to set a constant value for all input signals of port B to prevent it from
receiving undefined values, and clock port CLKB also needs to be connected to the system
clock to avoid timing violations. The replacement of the memory in the cache will be simpler
in comparison to the AHB module because the upper-level modules required data bus width
are smaller than those in the memory module and do not need an additional interface mod-
ule. The memory block can be directly instantiated in the upper level module. The code in
Appendix B shows one of the memory module instances in the upper-level modules.
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5.2 FUNCTIONAL SIMULATION

To test the logic unit functionality of the whole design without considering the time con-
straints, functional simulation by means of an EDA tool like Cadence Xcelium needs to be
completed. Afterwards the design implementation including synthesis and P&R process can
be started. This section presents the results of two simulations, which are also applied on the
gate-level netlist after synthesis and in the power consumption extraction after place & route.

5.2.1 RESULTS OF FUNCTIONAL SIMULATION

• Functional Simulation for the lw and sw instructions
First, since the current memory can only read 16-bit addresses and data while the initial
file mentioned in section 4.2.1 uses words of 32-bit, the initial files have to be split into
two parts, which contain a high and a low 16-bit halfword. Then the function "load" is
used in the testbench to load the file into the memory model as shown in Appendix C.
Moreover, the memories to be initialized at a specific time of 455ns due to the memory
reset which happens earlier.

1 initial
2 begin
3 #455
4 testbench_read.mipsfpganexys4_read.mipsfpga_sys.mipsfpga_ahb.

mipsfpga_ahb_ram_reset.sram_interface_15.
TSDN65LPA65536X16M32S_1.MX.load("../ rtl_up/initfiles /3
_Switches&LEDs/ram_reset_init_read_low.txt");

5 end

Listing 8: Code for load initial file in the testbench

At last, the paths to the testbench, to all module files, and to the memory module
files are defined in the execution script file "make" as shown in Appendix D, while the
header files are also added through the option "-incdir", which includes the definition
of variables used in the Verilog files. As mentioned above, it is necessary to additionally
split this machine code into two parts, which is done by means of the method men-
tioned in section 4.1. The Listing below shows the low part of the initial file loaded into
SRAM. Another part can be found in chapter 4.

1 bf80
2 0004
3 0008
4 000c
5 0000
6 0000
7 0000
8 0000
9 fffb
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Listing 9: ram_reset_init_read_low.txt

After analyzing the simulation result, it is clear that the contents of the initial file can be
found in the memory connected to the AHB. As mentioned above, two memories are
required, and the initial file load starts after 455ns, as shown in Figure 5.1. The values
of the preset input signals switch, and pushbutton can be passed to the output read
signal HRDATA, as shown in Figure 5.2.

Figure 5.1: Simulation result in memory

Figure 5.2: Simulation result for input and output

• Functional Simulations for the Register-Centric Program
This assembly program aims to execute instructions on data stored in registers with-
out any memory access in an infinite loop. At the label L1 of the program an address
is incremented from 0xbf800000 to 0xbf800030 and compared in the next line of the
program to check if the address is the same in both registers, and if they are the same,
then the program jumps to label L2, while at the label L2 the address is decremented
and afterwards a jump to the start of the loop is executed. The left half of Figure 5.3
shows the machine code obtained by generating the initial file described in subsection
4.1. Due to the different address bit sizes, the machine code also needs to be split into
two parts before the simulation. The lower 16-bit half-words are loaded into the SRAM
and are shown in Figure 5.4. Thus, by comparing the read data bus signal HRDATA and
the input address signal AA of the SRAM, it is clearly seen that at 6800 ns, the machine
code 2108FFF8 received from the output of the SRAM is passed to HRDATA, when the
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address 0008 at the signal AA is received, other addresses can also correspond to the
code. Due to the looping process, a new cycle starts at 7300 ns.

Figure 5.3: Assembly Program for Address Cycling

Figure 5.4: Functional Simulation Result for address cycling

5.3 SYNTHESIS

After the correct completion of the verification based on the functional simulations, this
chapter focuses on the logic synthesis process, which is the process of mapping the RTL
code through EDA tools like Cadence Genus to a gate-level circuit composed of logic gates
based on the TSMC standard cell libraries so that the generated results can be used in the im-
plementation process and also for other verification processes. In order to reduce dynamic
power, the clock propagation is reduced by using the clock gating technique for flip-flops that
are not updated. The following three steps are the main steps of synthesis.
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• Transition
HDL code conversion to generic Boolean gate arrays

• Optimization
Optimize the circuit and reduce unnecessary parts

• Mapping
Mapping Boolean equations to logic gates according to constraints and technical li-
braries

Figure 5.5: Synthesis flow in Genus [8]

As shown in Figure 5.5, the path to the required library files, like LEF, lib. files, all Verilog files,
and the memory module files need to be added and set in the setup script file before the syn-
thesis process can be performed, and finally, the netlist is exported as a Verilog file and also
constraints are automatically generated for the next implementation step. The function, tim-
ing and power characteristics of logic gates are defined in Liberty libraries while the physical
representation of the cell is defined in LEF (Library Exchange Format) format [9]. The Listing
below shows the basic setting for the files required during the synthesis.

1 set_db / .hdl_language v2001
2 set_db / .init_lib_search_path ".$DIGLIBS␣$MACROLIBS"
3 set_db / .script_search_path ".${synpath }/ scripts"
4 set_db / .init_hdl_search_path ".$RTL_PATH␣$MACRO_PATH"
5 #### Logging information level - suggested 7
6 set_db / .information_level $INFO_LEVEL
7 #### Reads the libraries.
8 # read_libs -max_libs $DIGLIBS$b$MACROLIBS
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9 read_libs -max_libs $DIGLIBS
10 ## PLE
11 set_db / .library "$DIGLIBS␣$MACROLIBS"
12 set_db / .lef_library $LEFLIBS
13 set_db / .cap_table_file $CAPTABLE

Listing 10: Basic files required during synthesis

The use of clock gating technique can be accomplished by setting the following option. And
the variable CLOCK_GATING is defined as true.

1 set_db / .lp_insert_clock_gating $CLOCK_GATING

5.3.1 TIMING CONSTRAINT

To meet the hold and setup time requirements of the internal unit, the clock, input, and out-
put ports need to be constraint in the SDC file [10]. Because of delays the transmission of
signals cannot be fully synchronized to each register in reality, so additional constraints need
to be set to reduce the impact caused by delays or other phenomena. The following will
introduce some of the commands used in this SDC file and some basic concepts of time con-
straints. The frequency of the clock needs to be determined at first. In this adaptation 50MHz
will be used, which corresponds to a period of 20ns, meanwhile the rising and falling edges
are defined as 0ns and 10ns respectively for 50% duty cycle. The corresponding command is
shown below.

1 create_clock -period 20.00 -name clk -waveform {0.00 10.00}
2 [get_ports clk]

Listing 11: Command create_clock

The next consideration is the time it takes for a signal to go from one state to another, for ex-
ample, from 0 to 1, which is called slew rate, and can be set by the instruction below, for signal
rise and fall, respectively. In contrast to set_clock_transition, which provides specification for
the entire clock network, the instruction defines the transition of a specific input signal.

1 set_clock_transition 1.65 -rise [get_clocks clk]
2 set_clock_transition 1.69 -fall [get_clocks clk]

Listing 12: Command set_clock_transition
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Another type of delay, known as clock latency, is caused by capacitive load of different ele-
ments. There are two types of clock latency, network latency and source latency. Network
latency is the delay from the clock definition point (create_clock) to the flip-flop clock pin.
Source latency is the delay from the clock source to the clock definition point. source latency
may represent on-chip or off-chip latency. The total clock delay on the flip-flop clock pins is
the sum of the source and the network delays [11]. The following command shows two types,
if no source is marked then the network type is indicated.

1 set_clock_latency -source -early 0.576 [get_clocks clk]
2 set_clock_latency -source -late 0.029 [get_clocks clk]

Listing 13: Command set_clock_latency

Before explaining the other commands, two concepts need to be introduced. One is jitter,
which is the difference between two clock cycles. This error is generated inside the clock
generator and is related to the internal circuitry of the crystal oscillator or the PLL, while the
routing has no effect on it. Another is skew, which is the difference in delay between multiple
sub-clock signals drived by the same clock. Because of skew or jitter issues, the design can
have setup and hold violations [11]. Due to the influence of these two factors, it is difficult
to predict the exact edge time which triggers the flip-flop, a phenomenon which is known
as uncertainty. Since the uncertainty is set for a single clock, setup is affected by both jitter
and skew, while hold is only affected by skew, so setup settings should be chosen greater than
hold settings.

1 set_clock_uncertainty -setup 0.19 [get_clocks clk]
2 set_clock_uncertainty -hold 0.15 [get_clocks clk]

Listing 14: Command set_clock_uncertainty

The concepts of setup and hold time need to be explained before introducing the input and
output delay. The time is the minimum time that the signal at the data input must remain
stable before the edge of the clock is valid. Hold time is the minimum time that the signal at
the data input must remain stable after the valid edge of the clock. The max and min options
are used in the following input, and output delay commands for the setup check and hold
check, respectively, where the input delay represents the arrival time for a given port at a
given clock, and the output delay is the amount of requested time before a clock edge.

1 set_input_delay -clock [get_clocks clk] -min -add_delay 3.200
2 [get_ports {sw[0]}]
3 set_input_delay -clock [get_clocks clk] -max -add_delay 7.200
4 [get_ports {sw[0]}]

Listing 15: Command set_input_delay
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1 set_output_delay -clock [get_clocks clk] -min -add_delay 3.000
2 [get_ports {led [0]}]
3 set_output_delay -clock [get_clocks clk] -max -add_delay 6.600
4 [get_ports {led [0]}]

Listing 16: Command set_output_delay

5.3.2 RESULTS OF SYNTHESIS

As mentioned at the beginning of this section in the first of the three main paths of the syn-
thesis procedures, the synthesis tool converts the HDL language into generic logic cells, like
AND and OR gates, or components with storage function, such as flip-flops, and then through
optimization and mapping to the standard cells of the target technology, the synthesis pro-
cess is completed. The optimization process also affects the hierarchy and as a result with
this design, there are only 7 modules left after synthesis.

• A Result Example
In Figure 5.6, a synthesized circuit built from cells from taken the standard cell library
is shown. The DFQD1 component is a flip-flop clocked by the system clock SI_ClkIn
and fed by the input signal mpc_evec_sel [3]. However, according to the corresponding

Figure 5.6: Synthesis schematic mpc_evec_sel[3]
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Verilog code shown in Listing 17 the actual input signal should be pre_evec_sel [3].

1 mvp_ucregister_wide #(. WIDTH (5)) _pre_evec_sel_reg_4_0_ (.q(
pre_evec_sel_reg[4:0]),.scanenable(gscanenable), .cond(
new_exc_chain_id), .clk(gclk), .d(pre_evec_sel));

Listing 17: Verilog description for pre_evec_sel_reg

The reason for the difference is that the signal pre_evec_sel[3] is driving the signal mpc_
evecsel[3], and thus the signal is replaced during synthesis. The statement relevant for
the optimization is as follows.

1 assign mpc_evecsel [7:0] = {debug_rdvec , debug_vect ,
pre_evec_sel };

Listing 18: Verilog description for the signal mpc_evecsel

In addition a multiplexer is also involved in the generation of the signal pre_evec_sel[3],
the related statement is given below:

1 assign pre_evec_sel [4:0] = new_exc_chain_id ? {au_reset_reg ,
cpz_bev , tlb_refill_vec_n , cacheerr_vect , int_vect} :

2 pre_evec_sel_reg ;}

Listing 19: Verilog description for the signal pre_evec_sel

Thus the corresponding netlist description shown below is generated after optimiza-
tion:

1 MUX2D0 g44380 (.I0 (mpc_mpc_exc_pre_evec_sel_reg[3]), .I1 (
cpz_bev), .S (mpc_mpc_exc_new_exc_chain_id), .Z (
mpc_evecsel[3]));

Listing 20: New Verilog description for the signal mpc_evecsel

• Result of Timing Constraints
The following listing shows that after the execution of the command read_sdc the tim-
ing constraints are all successfully executed.

1 Statistics for commands executed by read_sdc:
2 "create_clock" - successful 1 , failed 0 (

runtime 0.00)
3 "get_clocks" - successful 127 , failed 0 (

runtime 0.00)
4 "get_ports" - successful 179 , failed 0 (

runtime 0.00)
5 "set_clock_latency" - successful 3 , failed 0 (

runtime 0.00)
6 "set_clock_transition" - successful 2 , failed 0 (

runtime 0.00)
7 "set_clock_uncertainty"- successful 2 , failed 0 (

runtime 0.00)
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8 "set_input_delay" - successful 54 , failed 0 (
runtime 0.00)

9 "set_input_transition" - successful 27 , failed 0 (
runtime 0.00)

10 "set_load" - successful 32 , failed 0 (
runtime 0.00)

11 "set_output_delay" - successful 64 , failed 0 (
runtime 0.00)

Listing 21: Result of timing constraints

5.4 IMPLEMENTATION (FLOORPLAN AND P&R PROCESS)

This section will explain the process of implementation and its results, which includes two
parts: floorplan and place & route (P&R). The main consideration of floorplaning is the ar-
rangement of the I/O pads, the size and shape of the core, and the position of macro cells
and blockages, and the distribution of the power and ground network. The main purpose of
the power and ground network is to distribute the supply voltage from the pads to the entire
chip by means of a grid which consists of metal rings around the core and sufficiently ar-
ranged horizontal and vertical stripes. The purpose of the place step is to place standard cells
within the core based on the premise of the floorplan settings, and to optimize the location
of each component, add necessary buffers, and also remove some unnecessary components.
The route step involves establishing the connection between each component, optimizing
the timing and other items, and checking whether there is a congestion problem through
DRC. If so, it needs to be considered and fixed by adding stripes or blockages. Finally, nec-
essary files for the power extraction are generated including the synthesized netlist used in
the gate-level-simulation(GLS), the physical netlist, the DEF file and the extraction of power
parasitics.

5.4.1 FLOORPLANING RESULTS

Some basic parameters need to be set before defining the results of floorplan.

• MMMC
MMMC stands for Multi Mode Multi Corner and is a flow option which assures that the
design is functional under multiple operation conditions(corner) and multiple opera-
tion modes(mode). The main purpose of the MMMC file is the definition of operation
conditions used in timing analysis for the worst, best, typical process and capacitor and
resistance corners.

• VDD/VSS connection
The following command is required to define the ground/power connection before the
power planning and after design import. This definition is necessary because the initial
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HDL description and usually also the synthesized netlist does not contain any infor-
mation about the power connectivity. In addition the ground signal GND of the TSMC
memory module tsdn65lpa65536x16m32s has also to be connected to the ground net-
work. Tielo and Tiehi cells are used for the implementation of constant values like 0/1.
These cells have also to be connected to power and ground nets.

1 connect_global_net VDD -type pg_pin -pin_base_name VDD
-inst_base_name *

2 connect_global_net VSS -type pg_pin -pin_base_name GND
-inst_base_name *

3

4 connect_global_net VSS -type pg_pin -pin_base_name VSS
-inst_base_name *

5

6 connect_global_net VDD -type tiehi
7 connect_global_net VSS -type tielo

Listing 22: Command connect_global_net

• TSMC Memory Module Placement
31 memory cells are placed in the core area by means of the following command which
is added to the script file controlling the implementation flow. Here the option "-
place" is for defining the object name. It should be noted that the instance names are
changed during the synthesis process. The names of the hierarchical modules which
are flattened during synthesis become part of the instance in addition the dot indi-
cating the hierarchy level is exchanged by an underscore. The option "-ref " indicates
the object to be referenced for the definition of the relative SRAM component posi-
tion. Here the "die" edge is used as reference. Options like "-horizontal_edge_separate"
and "-vertical_edge_separate" define the vertical and horizontal space adjustment re-
spectively. To avoid wiring conflicts in P&R, and to reduce the length of the wires, it
is necessary to place the memory modules such that the pin ports are facing the core
area.

1 create_relative_floorplan
2 -place mipsfpga_sys_mipsfpga_ahb_mipsfpga_ahb_ram_reset_
3 sram_interface_15_TSDN65LPA65536X16M32S_2
4 -ref_type die_boundary
5 -horizontal_edge_separate {1 -120 1}
6 -vertical_edge_separate {2 -120 2}

Listing 23: Command create_relative_floorplan

• Add_stripes
To reduce the impedance of the power supply network stripes are added by the follow-
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ing command:

1 add_stripes -direction vertical -number_of_sets 13 -spacing 2
-layer M9 -width 10 -nets { VSS VDD } -start_offset 40
-stop_offset 40

Listing 24: Command add_stripes

Figure 5.7 shows the layout result of the finalized floorplan in physical mode. The width of
the die is chosen to be 4755 µm, the height is 3290 µm, and the distance from each edge of the
I/O boundary to the core area is 100 µm. In Figure 5.7, the Halo around the memory blocks
can be seen, which is set to prevent standard cells from being placed inside the area marked
by the Halo to reduce congestion.

Figure 5.7: Result of floorplan

48



5.4.2 RESULTS OF P&R

After the place and route procedure is completed, each pin and port is connected either to
each other or to VDD and VSS through different metal layers according to the location infor-
mation provided in the LEF.

• P&R Result of connection with VDD/VSS
For example, the input signals DB and BWEBB of the sram_interface module are con-
nected to constant zero, so they are connected to VSS through TIELO cells during place
and route. Figure 5.8 (a) shows that two ports are connected to each other through
metal three marked in green, and Figure (a) and (b) show that both are connected to
TIELO cells through metal2, which finally established the ground connection.

• Total Negative Slack and Worst Negative Slack
As shown in the following table, the worst negative slack has a positive value, which
means that the design passes timing checks. The total negative slack has a value of
zero, which means that the design matches the timing constraints.

Hold mode all reg2reg default

WNS(ns) 0.0239 0.0239 2.478

TNS(ns) 0.000 0.000 0.000

Violation Paths 0 0 0

All Paths 9698 9400 49

Table 5.2: WNS and TNS for hold mode
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(a)

(b)

Figure 5.8: Connection between port DB[15] and BWEBB[15] of the sram_interface with VSS
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6 SIMULATION

In this section, the simulation of the design after synthesis and P&R is discussed, which can
also be called post-p&r-simulation, In this approach a gate-level-simulation is performed
which considers the real delay introduced by the cells as well as the wiring. The X-propagation
is also discussed and a solution for the problem is presented. After this process, the power
consumption using Voltus will be extracted and the SRAM performance will be compared for
two different instruction types.

6.1 SIMULATION SETUP

Before starting the following two simulations, it is necessary to set up basic preferences for
the simulation environment. Solutions to unique problems, such as storage elements not
resetting themselves and x-propagation, are described in subsequent sections.

• Gate Level Simulation
The complete contents of command "run" below for GLS can be found in Appendix D.

1 xrun ... +rwc ../output/export.v
2 /eda/kits/TSMC/.../verilog/tcbn65lp_200a/tcbn65lp.v
3 ../testbench_read.v
4 ../memory.v
5 ...-sdf_cmd_file ../sdf_typ.cmd
6 -input ../export_saif_typ.tcl

Listing 25: xrun command for gate-level simulation

(1) Standard Delay Format (SDF) File
Timing and especially the propagation delay of the cells and the wiring can ei-
ther be set to zero, or to a unit delay or defined precisely during the implemen-
tation procedure. For detailed timing the SDF file has to be read during elab-
oration, which contains the actual delay simulation information extracted dur-
ing place & route which is back-annotated to the corresponding instance and
net of the netlist. The procedure of reading in the timing information can be
divided into two steps. The first step is to use the xrun command with the op-
tion "-sdf_cmd_file" to read the SDF file, as shown in Listing 26, the other step
is applied in the Verilog file which contains the netlist by using the command
"$sdf_annotate" to read the SDF information. The following introduces the set-
ting for the cmd file.

1 SDF_FILE = "../design_export.sdf",
2 SCOPE = "testbench_read.mipsfpganexys4_read",
3 LOG_FILE = "sdf_annotation_typ.log",
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4 MTM_CONTROL = "TYPICAL";

Listing 26: sdf_typ.cmd

The SDF file is specified by above code. In addition the scope of the simulation
has to be defined to adopt to any additional hierarchy level introduced by the sim-
ulation testbench. Furthermore the log file name and path, as well as delay mode
is set.
During simulation data has to be generated for use in the power extraction. For
this purpose an ASCII file in SAIF (Switching Activity Interchange Format) for-
mat, which contains the switching activity information, and the .trn extension file
which contains complete signals waveforms in SHM format [12] are generated by
the following Tcl code. For proper annotation during power extraction the cor-
rect simulation scope has to be chosen. And since the simulation does not stop
automatically, the appropriate run time needs to be added after the command
run.

1 dumpsaif -scope testbench_read.mipsfpganexys4_read
2 -internal -memories -overwrite -inctoggle
3 -output ..sim/output/saif_db_typ.saif
4 database -open shm_db -into ..sim/output/shm_db_typ.cmd
5 -shm
6 probe -create testbench_read.mipsfpganexys4_read
7 -depth all -shm -all
8 -database shm_db
9 -memories -unpacked 65536

10 run 200000 ns
11 exit

Listing 27: export_saif_typ.tcl

(2) Gate level netlist, Basic library cells
The gate-level-netlist is a netlist file generated during P&R, which contains the op-
timized design and in turn has many differences in the instances naming e.g. due
to removed hierarchy levels. The netlist is used as the basis of power extraction
in combination with the SDF file which is used to back annotate timing informa-
tion. The standard cell library contains gates provided by the technology vendor.
The library also includes logic cells, registers, latches, flip-flops, etc, and includes
functional models of each gate prepared for timing back-annotation.

(3) Testbench
The testbench is used during post-implementation timing simulation. Due to
the modified instance names, some instance names e.g. of the SRAM blocks in
the testbench have to be adapted in comparison to the functional simulation, as
shown in the following code. As already mentioned above removed hierarchy lev-
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els are introduced in the instance name and are separated by an underscore. The
lowest hierarchy level of the SRAM instance is called MX and is introduced by the
memory simulation model.

1 initial
2 begin
3

4 testbench_read.mipsfpganexys4_read.
5 mipsfpga_sys_mipsfpga_ahb_mipsfpga_ahb_ram_reset_
6 sram_interface_15_TSDN65LPA65536X16M32S_1
7 .MX.load("../ rtl_up/initfiles /3 _Switches&LEDs
8 /ram_reset_init_low.txt");
9 ....

10 end

Listing 28: Code for load in testbench during GLS

• Script for Power Extraction
The vector based engine of Cadence Voltus is used for power extraction. This tool is
controlled by a script which is partly explained in the following section.

1 read_mmmc ../power/scripts/mmmc9t_cui_voltus.view
2 read_physical -lefs {
3 /eda/kits/TSMC/CERN_C65LP/digital/Back_End/lef/tcbn65lp_200a/

lef/tcbn65lp_9lmT2.lef ../SRAM/tsdn65lpa65536x16m32s_200b/
LEF/tsdn65lpa65536x16m32s_200b_5m.lef ../SRAM/
tsdn65lpa65536x16m32s_200b/LEF/
tsdn65lpa65536x16m32s_200b.alef ../SRAM/
tsdn65lplla8192x16m16s_200a/LEF/
tsdn65lplla8192x16m16s_200a_5m.lef ../SRAM/
tsdn65lplla8192x16m16s_200a/LEF/
tsdn65lplla8192x16m16s_200a.alef}

4 read_netlist "../output/export.phys.v"
5 init_design
6 read_def ../output/export.def
7 read_spef -rc_corner RC_WORST ../output/export_RC_WORST.spef
8 read_spef -rc_corner RC_BEST ../output/export_RC_BEST.spef
9 read_spef -rc_corner RC_TYP ../output/export_RC_TYP.spef

Listing 29: Part of script for reading power simulation

(1) DEF
DEF(Design Exchange Format) is used to store physical design information and
contains design specific information.

(2) Physical gate-level netlist
The information in the physical gate-level netlist differs from that used in previ-
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ous simulations in that. It also includes power ground nets and physical cells like
fillers and spacers and decoupling cells.

(3) SPEF
SPEF (Standard Parasitic Exchange Format) is an IEEE standard for representing
parasitic in a chip wires in ASCII format. This data includes parasitic information
such as capacitances, resistances and inductances of wires. This file is generated
after the P&R.

(4) Technology LEF and Macro LEF files.

(5) MMMC for process corner and mode definition.

When setting the activity scope, it should be consistent with the module name and instance
name of the testbench, as shown below.

1 set ACTIVITY_SCOPE testbench_read/mipsfpganexys4_read

6.2 GATE LEVEL SIMULATION

Gate level simulation and RTL level simulation differ in terms of the used abstraction level
but also because of the timing information taken from the SDF file. Due to the introduced
delays clock setup and hold violations can occur, which give rise to the generation of un-
known signals, which can propagate through the complete circuits which is a huge source of
errors and is difficult to solve. In the following solutions for the problems encountered during
the simulation are presented.

• Initialization of Memories
For prevention of problems caused by passing undefined output values of SRAMs used
in the data and instruction caches to the AHB and other logic blocks, all memory arrays
in both caches need to be initialized in the testbench by loading an initial file memo-
ryinitial.txt, which contains only zero data, as shown in Listing 30.

1 initial
2 begin
3 ...
4 testbench_read.mipsfpganexys4_read.
5 mipsfpga_sys_top_cpu_dcache_dataram_ram__data_inst0.MX.
6 load("../ rtl_up/memoryinitial.txt");
7 ...
8 end

Listing 30: Resigter module mvp_register

• Flip-Flop without Reset
To reduce area and power consumption flip-flops used in the MIPS Core, do not have
a reset signal and can not be initialized after the power-up, as shown in Listing 31. The
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disadvantage of this configuration is that the simulation starts with undefined values
stored in the flip-flops which are propagated as value x to the outputs. Simulation re-
sults of the registers before and after initialization are shown in Figure 6.1.

1 ‘include "m14k_const.vh"
2 module mvp_register (
3 q,
4 clk ,
5 d
6 );
7 // synopsys template
8 parameter WIDTH = 1;
9 output [WIDTH -1:0] q;

10 reg [WIDTH -1:0] q;
11 input clk;
12 input [WIDTH -1:0] d;
13 always @(posedge clk)
14 begin
15 q <= #‘M14K_FDELAY d;
16 ‘ifdef MIPS_SIMULATION
17 ‘ifdef M14K_XCHECK
18 if ((clk === 1’bx) && (q !== d))
19 q <= #‘M14K_FDELAY {WIDTH{1’bx}};
20 ‘endif
21 ‘endif
22 end
23 endmodule

Listing 31: Resigter module mvp_register

(a)

(b)

Figure 6.1: Simulation result before and after initialization of the register

In order to solve flip-flops initialization, all signals are set to zero at the beginning by
using the option "-dfile" with the command xrun. In addition, the value 0 is assigned
to input signals enabled via the "-dfile" option through the Tcl deposit command. In
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the following the relevant options are given. The contents of two files are shown in
Listing 32,33, where the specified object is defined by the option "-scope," while "-depth
all" indicates all level of hierarchy. The option "-if_x" is used to initialize input signals
which have a value of "x," the initial value zero is set by the option "-allzero". The
command deposit is similar to the command force, but instead of forcing a permanent
change of the signal, it allows changes when new input signal values are assigned.

1 xrun ... -dfile ../sim/dfile.txt -input ../sim/scripts/
dfile.tcl...

Listing 32: Options for input initialization

1 MODULE *
2 PORTS IN *
3 ENDMODULE

Listing 33: dfile.txt

1 deposit -scope testbench_read.mipsfpganexys4_read -depth all
-if_x -allzero -verbose debug

Listing 34: dfile.tcl

• Clock Tree Timing Violation
Signal initialization affects especially the clock tree. As can be seen in Figure 6.2, the
clock is transferred through multiple inverters to each cell controlled by the clock. As
is shown in Figure 6.3 due to the short delay in the inverter, the inversion of signal
CTS_58 from 1 to 0 can not be completed and sent to CTS_57 in time, which results
into a timing violation in Listing 35 which gives rise to undefined signals. In order to
solve this problem, the initial value of all signals in the clock tree have to be found
for example by simulating without timing back-annotation. These values have to be
introduced in the script dfile.tcl, in which the value of each clock signal is adjusted
after 0 ns by means of the command deposit, as is shown in Listing 36. E.g. From the
simulation result, it is clear that the clock signal CTS_57 should be set to zero at the
beginning.

1 Warning! Timing violation
2 $width( posedge CLKA:120 PS, : 610 PS, 0.51 : 510 PS );
3 File: ../SRAM/
4 tsdn65lpa65536x16m32s_200b/VERILOG/
5 tsdn65lpa65536x16m32s_200b_ff1p32v0c.v, line = 588
6 Scope: testbench.mipsfpganexys4.mipsfpga_sys_mipsfpga_ahb_
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7 mipsfpga_ahb_ram_reset_
8 sram_interface_15_TSDN65LPA65536X16M32S_2
9 Time: 610 PS

Listing 35: Timing violation during gate-level-simulation

Figure 6.2: Schematic trace of CLKA in AHB SRAM

Figure 6.3: Clock with glitch

1 deposit testbench.mipsfpganexys4.CTS_57 0 -after 0 ns
-absolute

Listing 36: Modification of clock signal CTS_57 through the command deposit

• X-propagation after Initialization
Although the uninitialized inputs and warnings about clocks have been resolved, there
are still unknown signals in the simulation that lead to the inability to properly com-
plete the desired result in the simulation. The following methods can solve the X-
propagation problem that still exists.

(1) Address Signal Tracing
As shown in Figure 4.10, it is clear that the address of the SRAM in the interface
AHB is derived from the signal edp_abus_e[31:0] in the module execution data
path, and the simulation result of memory sram_interface_15 in Figure 6.4 below
shows that the address signal is in an unknown state shortly after 2000 ns. In order
to detect the reason, the signal source has to be traced in the netlist. Two signals
are finally identified which are used to select signals in a multiplexer module.
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Figure 6.4: Signals from ahb_ram_reset.sram_interface_15 and address source signals

i. edp.mpc_aselres_e
From the following instantiation of the signal edp_abus_e and the Verilog
description of the 2:1 MUX module it can be expected that rf_adt_e[28] is
passed to edp_abus_e[28] when the signal mpc_aselres_e is zero. However,
the schematic shown in Figure 6.5 does not match the Verilog description
and the instantiation, since the selection signal mpc_aselres_e whose value
is zero is passed to the signal FE_OFN51724_n_4753 through a buffer, then
the output value of the AND gate between the signal FE_OFN51724_n_4753
and FE_OFN52393_rf_adt_e_28 is constant zero. Thus, the signal rf_adt_e[28]
can not be selected and the value of the signal edp_abus_e[28] is always zero.
In order to enable the selection function, the selection signal mpc_aselres_e
needs to be flipped from 0 to 1 by using an instantiation with another form
of 2 to 1 multiplexer, which is described in more detail in the following text
about the modification of the Verilog description of the signal edp_abus_e.

1 mvp_mux2 #(. WIDTH (16)) _edp_abus_e_31_16_ (.y(
edp_abus_e[31:16]) ,.sel(mpc_aselres_e), .a(rf_adt_e[31:
16]), .b(preabus_e[31:16]));

Listing 37: 2:1 MUX for the signal edp_abus_e

1 ‘include "m14k_const.vh"
2 module mvp_mux2(
3 y,
4 sel ,
5 a,
6 b
7 );
8 parameter WIDTH = 1;
9 output [WIDTH -1:0] y;

10 reg [WIDTH -1:0] y;
11 input sel;
12 input [WIDTH -1:0] a;
13 input [WIDTH -1:0] b;
14 always @(sel or a or b)
15 begin
16 case(sel)
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17 1’b0 : y = a;
18 1’b1 : y = b;
19 default: y = {WIDTH{1’bx}};
20 endcase
21 end
22 endmodule

Listing 38: Verilog description of the 2:1 MUX module

Figure 6.5: Schematic of the signal edp_abus_e[28] and rf_adt_e[28]

From the description of the decoder and the selector in the AHB module given
in chapter 2, it is clear that the above errors lead to wrong address signals and
ultimately wrong decisions in addressing the SRAM.

ii. edp.n_9321
The signal edp.n_9321 is used as the selection signal for the low bit of the sig-
nal edp_abus_e. It is known from the schematic in Figure 6.6 that the signal is
undriven, which affects the output of the AND gate and therefore causes the X-
propagation.

(2) Modification of the Verilog description of the signal edp_abus_e [31:0]
From the above analysis, it can be concluded that the signal edp_abus_e can not get
the correct value, even if these two signals are forced to 0 or 1 by the command deposit
or force. The critical point is that the selection signal of the 2:1 MUX is always zero,
although the value zero is in accordance with the logical description of the 2:1 MUX
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Figure 6.6: Schematic of the signal n_9321

module, as described in Listing 37 for the module mvp_mux2, the signals correspond-
ing to "a" is selected when all selection signals are zero during simulation. However,
in the gate-level simulation an AND gate is part of the multiplexer and as a result the
selection signals need to be inverted before they are assigned to the AND gate input.
In order to achieve the correct operation of the signal selection, the 2:1 MUX instan-
tiations associated with the signal edp_abus_e are modified using assign statements
without affecting the functional simulation. The function of the respective logic is de-
scribed in the following Listing in the comment statement.

1

2 mvp_mux2 #(. WIDTH (16)) _edp_abus_e_31_16_
3 (.y(edp_abus_e[31:16]),.sel(mpc_aselres_e), .a(rf_adt_e[31:16]

), .b(preabus_e[31:16]));
4 // assign edp_abus_e [31:16]= mpc_aselres_e ?
5 // preabus_e [31:16] : rf_adt_e [31:16];
6

7 mvp_mux2 #(. WIDTH (16)) _abus_noinsv_e_15_0_
8 (.y(abus_noinsv_e[15:0]),.sel(mpc_aselres_e), .a(rf_adt_e[15:0

]), .b(preabus_e[15:0]));
9 // assign abus_noinsv_e [15:0] = mpc_aselres_e ?

10 // preabus_e [15:0] : rf_adt_e [15:0];
11

12 mvp_mux2 #(. WIDTH (5)) _abus_noinsv_imm_e_4_0_
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13 (.y(abus_noinsv_imm_e[4:0]),.sel(mpc_dec_imm_rsimm_e), .a(
abus_noinsv_e[4:0]) ,.b( mpc_dec_imm_apipe_sh_e[4:0]));

14 // assign abus_noinsv_imm_e [4:0] = mpc_dec_imm_rsimm_e ?
15 // mpc_dec_imm_apipe_sh_e [4:0] : abus_noinsv_e [4:0];
16

17 mvp_mux2 #(. WIDTH (5)) _edp_abus_e_4_0_
18 (.y(edp_abus_e[4:0]),.sel(mpc_dec_insv_e), .a(

abus_noinsv_imm_e[4:0]), .b(dsp_dspc_pos_e[4:0]));
19 // assign edp_abus_e [4:0] = mpc_dec_insv_e ?
20 // dsp_dspc_pos_e [4:0] : abus_noinsv_imm_e [4:0];
21

22 mvp_mux2 #(. WIDTH (11)) _edp_abus_e_15_5_
23 (.y(edp_abus_e[15:5]),.sel(mpc_dec_imm_rsimm_e), .a(

abus_noinsv_e[15:5]) ,.b( mpc_dec_imm_apipe_sh_e[15:5]));
24 // assign edp_abus_e [15:5] = mpc_dec_imm_rsimm_e ?
25 // mpc_dec_imm_apipe_sh_e [15:5] : abus_noinsv_e [15:5];

Listing 39: Verilog description of the selection source signals for edp_abus_e

After confirmation by functional simulation, synthesis and P&R, the modified gate-
level circuit is simulated again, and the following results are obtained. Comparing the
result in Figure 6.5 with the new schematic and simulation result in Figure 6.7, it can be
seen that the selection signal mpc_aselres_e is first transferred through an inverter and
the value is switched from 0 to 1, so that rf_adt_e [28] can be selected as expected and
transferred to edp_abus_e [28]. Another example is the selection signal n_9321 where

(a)

(b)

Figure 6.7: New schematic a) and simulation b) for the selection signal of edp_abus_e[28]

the original design gives rise to the value ’z’. As is shown in Figure 6.8, this signal is
replaced by an other signal mpc_dec_imm_rsimm_e as described in the Verilog state-
ment before, and the selection signal n_1179 of the signal rf_adt_e [4] originates from
an inversion of the signal mpc_aselres_e, which meets the expectation in post-layout
simulation.
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(a)

(b)

Figure 6.8: New schematic a) and simulation b) for the selection signal of edp_abus_e[4]

6.2.1 GATE-LEVEL SIMULATION RESULTS

After correction of the above errors, the GLS achieves the same result as the functional simu-
lation. When asserting the simulation command ’xrun’ mentioned in chapter 6.1 the options
for the initial flip-flop and input values and the clock tree signals discussed in section 6.2
need to be added, as shown in the following Listing.

1 xrun -sv -gui -l ../sim/logs/run_post_pnr_sim.log -access +rwc
2 ../output/export.v ../tcbn65lp.v ${PKGS_TB_NEXYS_READ}
3 ${PKGS_RTL_memory_tb}
4 -timescale 1ns/10ps -mess -ntc_level 2 -sdf_nopathedge -clean
5 -dfile ../sim/dfile.txt -input ../sim/scripts/dfile.tcl -clean
6 -sdf_cmd_file ../sim/scripts/sdf_typ.cmd -clean -input
7 ../sim/scripts/export_saif_shm_typ.tcl

Listing 40: New xrun command for gate level simulation

• Annotated Percentage
The annotation reaches 96.33%. So the timing information is almost completely anno-
tated to the design and the timing checks are finished.

1 SDF statistics:
2 No. of Pathdelays = 219107 No. of Disabled Pathdelays = 0

Annotated = 96.33% (211066/219107)
3 No. of Tchecks = 132353 No. of Disabled Tchecks = 0

Annotated = 89.88% (118957/132353)

Listing 41: Annotated percentage
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• GLS result for the memory centric program
The GLS result of the initial program about the first read/write instructions lw, sw is
obtained as shown below.

Figure 6.9: GLS Result for lw and sw instructions

• GLS Result for the register centric design
The GLS result for Address cycling is shown below, and the result is the same as in the
functional simulation.

Figure 6.10: GLS Result for register-centric program

6.3 POWER SIMULATION

This section describes the average power consumption, which can be divided into static
power and dynamic power. The static power refers to the power dissipation caused by leak-
age currents in the transistor, and can also be called leakage power. Dynamic power refers to
the power consumption caused by switching activity and can be divided into internal power
caused by charging and discharging of internal capacitors and switching caused by external
load capacitor charging and discharging [13]. Power consumption can be calculated manu-
ally or evaluated automatically by tools like Voltus.

• Manual Calculation
According to the different types of power consumed in standard cells and macro com-
ponents, the power consumption is estimated by the combination of the three contri-
butions, as shown below.

Ptot al = Pleakag e +Pswi tchi ng +Pi nter nal (6.1)

The three types of power consumption are described as follows.
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i. Leakage Power
Since the leakage power is state-dependent, there are different values for different
combinations of inputs, and the probability of each state is different. The calcu-
lation of the weighted sum of multiple states is based on the leakage power value
and the probability of input patterns. For example, in the liberty description of
the standard cell "AND2D0" various input conditions are described.

1 cell (AN2D0) {
2 area : 2.16;
3 cell_footprint : "an2d1";
4 ...
5 leakage_power () {
6 value : 0.004594;
7 related_pg_pin : VDD;}
8 leakage_power () {
9 value : 0.003626;

10 when : "!A1!A2!Z";
11 related_pg_pin : VDD;}
12 leakage_power () {
13 value : 0.004183;
14 when : "!A1A2!Z";
15 related_pg_pin : VDD;}
16 leakage_power () {
17 value : 0.005130;
18 when : "A1!A2!Z";
19 related_pg_pin : VDD;}
20 leakage_power () {
21 value : 0.005439;
22 when : "A1A2Z";
23 related_pg_pin : VDD;}

In following, the complete clause set is calculated. The probability of all clauses
should sum up to 1. If it is less than 1, the clause set is incomplete. If it is greater
than 1, there is an error in the library data. The equation for calculating the com-
plete clause set is given as.

Pleakag e =
4∑

i=1
(pi ∗pr obi ) (6.2)

where p is the leakage value for each condition and prob is the probability for each
input value.
The possible leakage power for the cell in the above example is shown in Equation
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6.3.
Pleakag e (AN 2D0) =∑

i
(pi ∗pr obi )

= 0.004594∗pr ob(1)+0.003626∗pr ob(2)

+0.004183∗pr ob(3)+0.005130∗pr ob(4)

Pr obtot al =
4∑

i=1
pr obi = 1

(6.3)

Definitions for use with incomplete clause sets are shown below, the first of which
can replace the missing condition with the generic leakage value, while the other
is without the generic leakage value.

Pi ncom_g ene =Pl eakag e +pg ener i c ∗ (1−pr obother )

Pi ncom_wi thout_g ene = Pleakag e

Pr obtot al

(6.4)

ii. Switching Power
The switching power is related to the supply voltage, load capacitance and transi-
tion density, and is calculated as given below.

Pswi tchi ng = 1

2
CV 2D (6.5)

where:
C = load capacitance
V = supply voltage
D = transition density

Transition density results from product of A(nodal activity or switching activity)
and f(Frequency).

iii. Internal Power
The internal power can also be divided into pin power and arc power, both of
which are state-dependent. The former relies on the energies represented in the
"when" clause function and signal activity, and since the probability of a logic
value of 0 or 1 varies from input to input, it needs to be taken into account in the
calculation of energy. The latter is described in an energy table of the cell based
on timing arcs. Then the total internal power is the sum of both.

* input pins
For a port of multiple inputs, the energy value is calculated as follows.

Ei n = 1

2

∑
i Pr obi ∗ (Er i se +E f al l )∑

i Pr obi
(6.6)

where:
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Ei n = input energy
Probi = probability that the value of the input i is 1 or 0
Er i se = energy in rise transition
E f al l = energy in fall transition

The power calculation needs to consider the transition density, which has
been described before. The following is the equation of the input pins power.

Pi nter nal_i n =∑
i

Ei n ∗ AFi

=∑
i

Ei n ∗Di
(6.7)

The input port energy value A1 of the AND gate cell AN2D0 can be found
in the .lib file below. The attribute index_1 indicates the rise transition time
and fall transition time and the attribute values shows the energy value of
corresponding time. The unit defined in this .lib file is ns and pJ, respectively.

1 pin(A1) {
2 direction : input;
3 related_ground_pin : VSS;
4 related_power_pin : VDD;
5 capacitance : 0.0006718;
6 rise_capacitance : 0.0006718;
7 fall_capacitance : 0.0006156;
8 internal_power () {
9 when : "!A2&!Z";

10 related_pg_pin : VDD;
11 rise_power (passive_power_template_7x1_0) {
12 index_1 ("0.0066,0.0174,0.0391,0.0825,
13 0.1692,0.3427,0.6897");
14 values ( \
15 "-0.0003695,-0.0003834,-0.0003892,-0.0003912,
16 -0.0003931,-0.0003958,-0.0004072" \
17 );
18 }
19 fall_power (passive_power_template_7x1_0) {
20 index_1 ("0.0066,0.0174,0.0391,0.0825,
21 0.1692,0.3427,0.6897");
22 values ( \
23 "0.0004737,0.0004847,0.0004883,0.0004912,
24 0.0004919,0.0004917,0.0004915" \
25 );
26 }
27 }
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* output pins
The calculation of the power at the output considers two energy values for
rising- and falling transitions, the formula for calculating the output power is
as follows.

Pi nter nal_out =
1

2
(Er i se +E f al l )Dout (6.8)

The table example from the .lib file for the output energy of the cell AN2D0
can be viewed below. The switching power can also be calculated accord-
ingly, where the floating values of the attribute index_1 refer to the input tran-
sition time and the floating values of the attribute index_2 refer to the total
output net capacitance.

1 pin(Z) {
2 direction : output;
3 power_down_function : "!VDD+VSS";
4 function : "(A1␣A2)";
5 related_ground_pin : VSS;
6 related_power_pin : VDD;
7 max_capacitance : 0.02955;
8 internal_power () {
9 related_pin : "A1";

10 related_pg_pin : VDD;
11 rise_power (power_template_7x7_0) {
12 index_1 ("0.0066,0.0174,0.0391,0.0825,
13 0.1692,0.3427,0.6897");
14 index_2 ("0.00053,0.00099,0.00191,0.00375,
15 0.00744,0.01481,0.02955");
16 values ( \
17 "0.001467,0.00148,0.001506,0.001529,
18 0.001544,0.001554,0.001569",\
19 );
20 }

• Automatic Calculation
The simulation based power consumption through the EDA tools such as Cadence Vol-
tus is chosen as the main method in the present case to reduce the calculation cost for
the complex netlist. The switching activity interchange format mentioned before is in-
troduced to the power simulation to get accurate switching information. In addition
to the reduced cost also calculation accuracy and generality are additional advantages
[14].
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6.3.1 POWER SIMULATION RESULTS AND ANALYSIS

This subsection focuses on comparing power simulation based on two different programs.

• Power Consumption of lw and sw Instructions
First the power simulation result of the simulation using a memory centric program
with many read and write instructions is presented graphically by a color code in the
layout in Figure 6.11. It can be seen that the memory blocks are marked in red which
according to the legend in the left corresponds to the highest power value. The detailed

Figure 6.11: Power consumption layout for lw&sw instructions

total power consumption of each cell can be extracted by analysis of the database file
statPower.db, from which the results of the graphical representation in the layout view
are confirmed. The sram_interface_16 consumes the highest value of 2.17778mW is .
Since the executed instructions are mainly lw and sw, the two other SRAM modules
of the cell sram_interface_15 also consume 2.17367nw and 2.16348nW, respectively, as
shown in Figure 6.12.
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Figure 6.12: Cell with highest power dissipation (lw&sw)

The histogram in Figure 6.13 shows that the power consumption of the cell with the
highest contribution is dominated by internal power, which has the value of 2.09mW,
followed by switching power with a value of 0.05mW while leakage power has the low-
est contribution of 0.04mW. From the overall distribution of the three types of power
it can be clearly seen through the following histogram, that the main power contribu-
tion is also internal power, which is 35.40mW, followed by the switching power, which
consumes 1.49mW, while leakage power is again the lowest contribution with a value
of 0.3mW. By means of the power simulation also the influence of clock gating can be
observed. In the listing shown below the internal power consumption of the sequential
cells used in the design e.g. flip-flops are shown without (old) and with (new) clock-
gating enabled. As can be seen from the report internal power consumption is reduced
by 3mW by activating clock-gating during implementation.

1 Group Internal Switching Leakage Total
2 Power Power Power Power
3 ---------------------------------------------------------------

4 Sequential(old) 3.838 0.01408 0.002477 3.854
5 Sequential(new) 0.8914 0.01439 0.002473 0.9083

• Power Consumption of the Register-Centric Program
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Figure 6.13: Three type of power consumption
cell sram_interface_16_TSDN65LPA65536X16M32S_1 (lw&sw)

Next the result of the power consumption for the simulation using a register centric
program without any data memory accesses is presented. It is obvious that the power
consumption of the SRAMs connected to the AHB interface is lower than the result
for the program having many lw&sw instructions. However the power consumption
in the caches, especially in the data cache, is higher than before, while the instruction
cache power consumption is lower. The total internal power consumption as shown in
Figure 6.16 is 36.12mW, which is higher than the consumption of the load/read word
instructions.
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Figure 6.14: Three types of power consumption for every hierarchy (lw&sw)

Figure 6.15: Cell with highest power dissipation (register-centric)
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Figure 6.16: Three types of power for every hierarchy (register-centric)

From the above two power consumption results, it is clear that the power consumption of
the SRAMs connected to the AHB interface is higher when lw and sw instructions are used
than when no lw and sw instructions are used, which is in line with the expected result. But
surprisingly the overall macro power consumption of the memory-centric program is lower
than of the register-centric program, mainly due to the fact that the power consumption in
the data cache is relatively low and the macro internal power is less by 0.74mW, as shown in
the table below.

1 Group Internal Switching Leakage Total
2 Power Power Power Power
3 ---------------------------------------------------------------
4 macro(lw&sw) 34.15 0.1371 0.2897 34.57
5 macro(cycling) 34.89 0.1371 0.2897 35.32

7 CONCLUSIONS

This thesis provides a basic understanding of the MIPS instruction set and the internal oper-
ation of the MIPS core. It also introduces the results of functional simulation for different in-
structions. A problem with undefined signals marked with X is encountered during the GLS,
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as described above. After using a new form of 2 to 1 multiplexer for the signal edp_abus_e
and setting the input initial value to zero, the problem could be solved. This result is however
remarkable because other parts of the logic also use the same module MUX2 and do not show
any problems. The power consumption of the SRAMs and other logic cells, and registers in
the core is also slightly different than the expected results. The deviation is mainly caused by
the data cache and a deeper understanding of how the cache works would be necessary to
get a valid explanation for the observed behavior.
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A CODE FOR THE MEMORY TSN65LPLLDPSRAM

The following are the codes for each of the two types of memory.

1 ‘resetall
2 ‘celldefine
3 ‘timescale 1ns/10ps
4 ‘delay_mode_path
5 ‘suppress_faults
6 ‘enable_portfaults
7 ‘ifdef UNIT_DELAY
8 ‘define SRAM_DELAY 0.010
9 ‘endif

10 module TSDN65LPA65536X16M32S
11 (AA,
12 DA,
13 BWEBA ,
14 WEBA ,CEBA ,CLKA ,
15 AB,
16 DB,
17 BWEBB ,
18 WEBB ,CEBB ,CLKB ,
19 QA,
20 QB);
21 // Parameter declarations
22 parameter N = 16;
23 parameter W = 65536;
24 parameter M = 16;
25 ...
26 ...
27 ...
28 // Task for loading contents of a memory
29 task load; //{ USAGE: initial inst.load (" file_name ");
30 input [256*8:1] file; // Max 256 character File Name
31 begin
32 $display ("\n%m:␣Reading␣file ,␣%0s,␣into␣memory", file);
33 $readmemh (file , mem , 0, Nword -1);
34 end
35 endtask //}
36 ...
37 ...
38 endmodule

Listing 42: Part of code for TSDN65LPA65536X16M32S

1 ‘resetall
2 ‘celldefine
3 ‘timescale 1ns/1ps
4 ‘delay_mode_path
5 ‘suppress_faults
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6 ‘enable_portfaults
7 ‘ifdef UNIT_DELAY
8 ‘define SRAM_DELAY 0.010
9 ‘endif

10 module TSDN65LPLLA8192X16M16S
11 (AA,
12 DA,
13 BWEBA ,
14 WEBA ,CEBA ,CLKA ,
15 AB,
16 DB,
17 BWEBB ,
18 WEBB ,CEBB ,CLKB ,
19 QA,
20 QB);
21 // Parameter declarations
22 parameter N = 16;
23 parameter W = 8192;
24 parameter M = 13;
25

26 ...
27 ...
28 ...
29 // Task for loading contents of a memory
30 task load; //{ USAGE: initial inst.load (" file_name ");
31 input [256*8:1] file; // Max 256 character File Name
32 begin
33 $display ("\n%m:␣Reading␣file ,␣%0s,␣into␣memory",
34 file);
35 $readmemb (file , mem , 0, Nword -1);
36 end
37 endtask //}
38 endtask //}
39 ...
40 ...
41 endmodule

Listing 43: Part of code for TSDN65LPLLA8192X16M16S

B CODE FOR SRAM INTERFACE AND MEMORY REPLACEMENT

1 module sram_interface
2

3 (
4 // Signals to SRAM1 Port A (lower 16 bits)
5 input [15:0] AA1 ,
6 input [15:0] DA1 ,
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7 input [15:0] BWEBA1 ,
8 input WEBA1 ,
9 input CEBA1 ,

10 input CLKA1 ,
11 output [15:0] QA1 ,
12 // Signals to SRAM2 Port A (upper 16 bits)
13 input [15:0] AA2 ,
14 input [15:0] DA2 ,
15 input [15:0] BWEBA2 ,
16 input WEBA2 ,
17 input CEBA2 ,
18 input CLKA2 ,
19 output [15:0] QA2
20 );
21 // Combine 2x16bit from SRAM into single 32bit for the mem bridge
22 TSDN65LPA65536X16M32S TSDN65LPA65536X16M32S_1(
23 .AA(AA1),
24 .DA(DA1),
25 .BWEBA(BWEBA1),
26 .WEBA(WEBA1),
27 .CEBA(CEBA1),
28 .CLKA(CLKA1),
29 .QA(QA1),
30 .WEBB (1’b0),
31 .CEBB (1’b1),
32 .BWEBB (16’h0000),
33 .CLKB (clk),
34 .AB (16’h0000),
35 .DB (16’h0000),
36 .QB ()
37

38 );
39 TSDN65LPA65536X16M32S TSDN65LPA65536X16M32S_2(
40 .AA(AA2),
41 .DA(DA2),
42 .BWEBA(BWEBA2),
43 .WEBA(WEBA2),
44 .CEBA(CEBA2),
45 .CLKA(CLKA2),
46 .QA(QA2),
47 .WEBB (1’b0),
48 .CEBB (1’b1),
49 .BWEBB (16’h0000),
50 .CLKB (clk),
51 .AB (16’h0000),
52 .DB (16’h0000),
53 .QB ()
54 );
55 endmodule
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Listing 44: SRAM interface module

1 ‘timescale 100ps/1ps
2

3 ‘include "mipsfpga_ahb_const.vh"
4

5 module mipsfpga_ahb_ram_reset
6 (
7 input HCLK ,
8 input HRESETn ,
9 input [ 31: 0] HADDR ,

10 input [ 31: 0] HWDATA ,
11 input HWRITE ,
12 input HSEL ,
13 output [ 31: 0] HRDATA
14 );
15

16 wire [31:0] HADDR_d;
17 // H_RAM_RESET_ADDR_WIDTH =15
18 wire [15:0] HRDATA_1;
19 wire [15:0] HRDATA_2;
20

21 sram_interface sram_interface_15
22 (
23 .DA1 (HWDATA[15:0]),
24 .AA1 ({1’b0,HADDR[(‘H_RAM_RESET_ADDR_WIDTH +1):2]}),
25 .WEBA1 (~( HWRITE&HSEL)),
26 .BWEBA1 (16’h0000),
27 .CEBA1 (1’b0),
28 .CLKA1 (HCLK),
29 .QA1 (HRDATA_1)
30

31 .DA2 (HWDATA[31:16]),
32 .AA2 ({1’b0,HADDR[(‘H_RAM_RESET_ADDR_WIDTH +1):2]}),
33 .WEBA2 (~( HWRITE&HSEL)),
34 .BWEBA2 (16’h0000),
35 .CEBA2 (1’b0),
36 .CLKA2 (HCLK),
37 .QA2 (HRDATA_2)
38 );
39

40 assign HRDATA ={HRDATA_2 ,HRDATA_1 };
41 endmodule

Listing 45: Instantiation between memory and upper level module

1 ‘include "m14k_const.vh"
2 module tagram_2k2way_xilinx(
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3 clk ,
4 line_idx ,
5 rd_str ,
6 wr_str ,
7 early_ce ,
8 greset ,
9 wr_mask ,

10 wr_data ,
11 rd_data ,
12 hci ,
13 bist_to ,
14 bist_from);
15 /* Inputs */
16 input clk; // Clock
17 input [6:0] line_idx;// Read Array Index
18 input rd_str; // Read Strobe
19 input wr_str; // Write Strobe
20 input [1:0] wr_mask; // Write Mask
21 input [23:0] wr_data; // Data for Tag Write
22 input [0:0] bist_to;
23 input early_ce;
24 input greset;
25 /* Outputs */
26 output[47:0] rd_data; // output from read
27 output[0:0] bist_from;
28 output hci;
29 assign hci = 1’b0;
30 assign bist_from[0] = 1’b0;
31 wire [31:0] wide_wr_data = {8’b0 , wr_data };
32 wire [63:0] wide_rd_data;
33 wire [47:0] rd_data = {wide_rd_data[55:32], wide_rd_data[

23:0]};
34

35 wire [1:0] en;
36 ‘ifdef M14K_EARLY_RAM_CE
37 assign en = {2{ early_ce }};
38 ‘else
39 assign en = {2{ wr_str }} & wr_mask | {2{ rd_str }};
40 ‘endif
41

42 TSDN65LPLLA8192X16M16S ram__tag_inst0 (
43 .WEBA (~( wr_str && wr_mask[0])),
44 .BWEBA (16’h1111),
45 .CEBA (en[0]),
46 .CLKA (clk),
47 .AA ({6’b0,line_idx }),
48 .DA (wide_wr_data[15:0]),
49 .QA (wide_rd_data[15:0]),
50 .WEBB (1’b0),
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51 .CEBB (1’b1),
52 .BWEBB (16’h0000),
53 .CLKB (clk),
54 .AB (16’h0000),
55 .DB (16’h0000),
56 .QB ()
57 );
58 TSDN65LPLLA8192X16M16S ram__tag_inst1 (
59 .WEBA (~( wr_str && wr_mask[0])),
60 .BWEBA (16’hFFFF),
61 .CEBA (en[0]),
62 .CLKA (clk),
63 .AA ({6’b0,line_idx }),
64 .DA (wide_wr_data[31:16]),
65 .QA (wide_rd_data[31:16]),
66 .WEBB (1’b0),
67 .CEBB (1’b1),
68 .BWEBB (16’h0000),
69 .CLKB (clk),
70 .AB (16’h0000),
71 .DB (16’h0000),
72 .QB ()
73 );
74

75 TSDN65LPLLA8192X16M16S ram__tag_inst2 (
76 .WEBA (~( wr_str && wr_mask[1])),
77 .BWEBA (16’hFFFF),
78 .CEBA (en[1]),
79 .CLKA (clk),
80 .AA ({6’b0,line_idx }),
81 .DA (wide_wr_data[15:0]),
82 .QA (wide_rd_data[47:32]),
83 .WEBB (1’b0),
84 .CEBB (1’b1),
85 .BWEBB (16’h0000),
86 .CLKB (clk),
87 .AB (16’h0000),
88 .DB (16’h0000),
89 .QB ()
90 );
91 TSDN65LPLLA8192X16M16S ram__tag_inst3 (
92 .WEBA (~( wr_str && wr_mask[1])),
93 .BWEBA (16’hFFFF),
94 .CEBA (en[1]),
95 .CLKA (clk),
96 .AA ({6’b0,line_idx }),
97 .DA (wide_wr_data[31:16]),
98 .QA (wide_rd_data[63:48]),
99 .WEBB (1’b0),
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100 .CEBB (1’b1),
101 .BWEBB (16’h0000),
102 .CLKB (clk),
103 .AB (16’h0000),
104 .DB (16’h0000),
105 .QB ()
106 );
107

108 endmodule

Listing 46: Instantiation between memory in cache and upper level module

C TESTBENCH

1 ‘timescale 100ps/1ps
2 module testbench_read;
3 reg clk;
4 reg btnCpuReset;
5 reg btnU , btnD , btnL , btnR , btnC;
6 reg [15:0] sw;
7 wire [15:0] led;
8 wire [ 7:0] IO_7SEGEN_N;
9 wire [ 6:0] IO_7SEG_N;

10 wire JB_2;
11 reg JB_0;
12 reg JB_1;
13 reg JB_3;
14 reg JB_4;
15 reg JB_5;
16 wire [ 5:0] JB_tb;
17

18 assign JB_tb[5:0]={JB_5 ,JB_4 ,JB_3 ,JB_2 ,JB_1 ,JB_0};
19

20 mipsfpga_nexys4 mipsfpganexys4_read( clk ,
21 btnCpuReset ,
22 btnU , btnD , btnL , btnR , btnC ,
23 sw,
24 led ,
25 IO_7SEGEN_N ,
26 IO_7SEG_N ,
27 JB_tb
28 );
29

30 initial
31 begin
32 clk = 0;
33 JB_4 = 0; JB_1 = 0; JB_0 = 0; JB_3 = 0;
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34 JB_5 = 1;
35

36 forever
37 #50 clk = ~ clk;
38

39 end
40

41 initial
42 begin
43 #455
44

45 testbench_read.mipsfpganexys4_read.mipsfpga_sys.mipsfpga_ahb.
mipsfpga_ahb_ram_reset.sram_interface_15.
TSDN65LPA65536X16M32S_1.MX.load("../ rtl_up/initfiles /3 _Switches
&LEDs/ram_reset_init_low.txt");

46 testbench_read.mipsfpganexys4_read.mipsfpga_sys.mipsfpga_ahb.
mipsfpga_ahb_ram_reset.sram_interface_15.
TSDN65LPA65536X16M32S_2.MX.load("../ rtl_up/initfiles /3 _Switches
&LEDs/ram_reset_init_high.txt");

47 testbench_read.mipsfpganexys4_read.mipsfpga_sys.mipsfpga_ahb.
mipsfpga_ahb_ram.sram_interface_16.TSDN65LPA65536X16M32S_1.MX.
load("../ rtl_up/initfiles /3 _Switches&LEDs/ram_program_init_low.
txt");

48 testbench_read.mipsfpganexys4_read.mipsfpga_sys.mipsfpga_ahb.
mipsfpga_ahb_ram.sram_interface_16.TSDN65LPA65536X16M32S_2.MX.
load("../ rtl_up/initfiles /3 _Switches&LEDs/ram_program_init_high
.txt");

49 end
50

51 initial
52 begin
53 force testbench_read.mipsfpganexys4_read.sw=16’hfeed;
54 force testbench_read.mipsfpganexys4_read.btnU=1’b0;
55 force testbench_read.mipsfpganexys4_read.btnD=1’b1;
56 force testbench_read.mipsfpganexys4_read.btnL=1’b1;
57 force testbench_read.mipsfpganexys4_read.btnR=1’b0;
58 force testbench_read.mipsfpganexys4_read.btnC=1’b1;
59 end
60

61 initial
62 begin
63 btnCpuReset <= 0;
64 repeat (100) @(posedge clk);
65 btnCpuReset <= 1;
66 repeat (1000) @(posedge clk);
67

68 end
69

70 initial
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71 begin
72 $dumpvars;
73 $timeformat (-9, 1, "ns", 10);
74 end
75 endmodule

Listing 47: Testbench for functional simulation

D SCRIPT FOR "MAKE"

1 DESIGNPATH = /user/yshi/Abschlussarbeit/MIPSfpga/digital/default
2

3 SRS_PATH = ${DESIGNPATH}
4

5

6 PKGS_RTL_memory_tb = \
7 ${SRS_PATH }/SRAM/tsdn65lpa65536x16m32s_200b/VERILOG/

tsdn65lpa65536x16m32s_200b_ff1p32v0c.v\
8 ${SRS_PATH }/SRAM/tsdn65lplla8192x16m16s_200a/VERILOG/

tsdn65lplla8192x16m16s_200a_ff1p32v0c.v\
9

10 PKGS_TB = \
11 ${SRS_PATH }/sim/testbench.v \
12

13 PKGS_TB_NEXYS = \
14 ${SRS_PATH }/sim/testbenchnexys4.v \
15

16 PKGS_TB_NEXYS_READ = \
17 ${SRS_PATH }/sim/testbenchnexys4_read.v \
18

19 PKGS_TB_NEXYS_loop= \
20 ${SRS_PATH }/sim/testbenchnexys4loop.v \
21

22 PKGS_RTL_syn = \
23 ${SRS_PATH }/ rtl_up/dataram_2k2way_xilinx.v\
24 ${SRS_PATH }/ rtl_up/d_wsram_2k2way_xilinx.v\
25 ${SRS_PATH }/ rtl_up/ejtag_reset.v\
26 ${SRS_PATH }/ rtl_up/i_wsram_2k2way_xilinx.v\
27 ${SRS_PATH }/ rtl_up/m14k_alu_dsp_stub.v\
28 ${SRS_PATH }/ rtl_up/m14k_alu_shft_32bit.v\
29 ${SRS_PATH }/ rtl_up/m14k_bistctl.v\
30 ${SRS_PATH }/ rtl_up/m14k_biu.v\
31 ${SRS_PATH }/ rtl_up/m14k_cache_cmp.v\
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32 ${SRS_PATH }/ rtl_up/m14k_cache_mux.v\
33 ${SRS_PATH }/ rtl_up/m14k_cdmmstub.v\
34 ${SRS_PATH }/ rtl_up/m14k_clockandlatch.v\
35 ${SRS_PATH }/ rtl_up/m14k_clock_buf.v\
36 ${SRS_PATH }/ rtl_up/m14k_clock_nogate.v\
37 ${SRS_PATH }/ rtl_up/m14k_clockxnorgate.v\
38 ${SRS_PATH }/ rtl_up/m14k_cop1_stub.v\
39 ${SRS_PATH }/ rtl_up/m14k_cop2_stub.v\
40 ${SRS_PATH }/ rtl_up/m14k_core.v\
41 ${SRS_PATH }/ rtl_up/m14k_cp1_stub.v\
42 ${SRS_PATH }/ rtl_up/m14k_cp2_stub.v\
43 ${SRS_PATH }/ rtl_up/m14k_cpu.v\
44 ${SRS_PATH }/ rtl_up/m14k_cpz.v\
45 ${SRS_PATH }/ rtl_up/m14k_cpz_antitamper_stub.v\
46 ${SRS_PATH }/ rtl_up/m14k_cpz_eicoffset_stub.v\
47 ${SRS_PATH }/ rtl_up/m14k_cpz_guest_srs1.v\
48 ${SRS_PATH }/ rtl_up/m14k_cpz_guest_stub.v\
49 ${SRS_PATH }/ rtl_up/m14k_cpz_pc.v\
50 ${SRS_PATH }/ rtl_up/m14k_cpz_pc_top.v\
51 ${SRS_PATH }/ rtl_up/m14k_cpz_prid.v\
52 ${SRS_PATH }/ rtl_up/m14k_cpz_root_stub.v\
53 ${SRS_PATH }/ rtl_up/m14k_cpz_sps_stub.v\
54 ${SRS_PATH }/ rtl_up/m14k_cpz_srs1.v\
55 ${SRS_PATH }/ rtl_up/m14k_cpz_watch_stub.v\
56 ${SRS_PATH }/ rtl_up/m14k_cscramble_scanio_stub.v\
57 ${SRS_PATH }/ rtl_up/m14k_cscramble_stub.v\
58 ${SRS_PATH }/ rtl_up/m14k_cscramble_tpl.v\
59 ${SRS_PATH }/ rtl_up/m14k_dc.v\
60 ${SRS_PATH }/ rtl_up/m14k_dc_bistctl.v\
61 ${SRS_PATH }/ rtl_up/m14k_dcc.v\
62 ${SRS_PATH }/ rtl_up/m14k_dcc_fb.v\
63 ${SRS_PATH }/ rtl_up/m14k_dcc_mb_stub.v\
64 ${SRS_PATH }/ rtl_up/m14k_dcc_parity_stub.v\
65 ${SRS_PATH }/ rtl_up/m14k_dcc_spmb_stub.v\
66 ${SRS_PATH }/ rtl_up/m14k_dcc_spstub.v\
67 ${SRS_PATH }/ rtl_up/m14k_dspram_ext_stub.v\
68 ${SRS_PATH }/ rtl_up/m14k_edp.v\
69 ${SRS_PATH }/ rtl_up/m14k_edp_add_simple.v\
70 ${SRS_PATH }/ rtl_up/m14k_edp_buf_misc.v\
71 ${SRS_PATH }/ rtl_up/m14k_edp_clz.v\
72 ${SRS_PATH }/ rtl_up/m14k_edp_clz_4b.v\
73 ${SRS_PATH }/ rtl_up/m14k_edp_clz_16b.v\
74 ${SRS_PATH }/ rtl_up/m14k_ejt.v\
75 ${SRS_PATH }/ rtl_up/m14k_ejt_and2.v\
76 ${SRS_PATH }/ rtl_up/m14k_ejt_area.v\
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77 ${SRS_PATH }/ rtl_up/m14k_ejt_async_rec.v\
78 ${SRS_PATH }/ rtl_up/m14k_ejt_async_snd.v\
79 ${SRS_PATH }/ rtl_up/m14k_ejt_brk21.v\
80 ${SRS_PATH }/ rtl_up/m14k_ejt_bus32mux2.v\
81 ${SRS_PATH }/ rtl_up/m14k_ejt_dbrk.v\
82 ${SRS_PATH }/ rtl_up/m14k_ejt_gate.v\
83 ${SRS_PATH }/ rtl_up/m14k_ejt_ibrk.v\
84 ${SRS_PATH }/ rtl_up/m14k_ejt_mux2.v\
85 ${SRS_PATH }/ rtl_up/m14k_ejt_pdttcb_stub.v\
86 ${SRS_PATH }/ rtl_up/m14k_ejt_tap.v\
87 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_dasamstub.v\
88 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_fdcstub.v\
89 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_pcsamstub.v\
90 ${SRS_PATH }/ rtl_up/m14k_ejt_tck.v\
91 ${SRS_PATH }/ rtl_up/m14k_fpuclk1_nogate.v\
92 ${SRS_PATH }/ rtl_up/m14k_generic_dataram.v\
93 ${SRS_PATH }/ rtl_up/m14k_generic_tagram.v\
94 ${SRS_PATH }/ rtl_up/m14k_generic_wsram.v\
95 ${SRS_PATH }/ rtl_up/m14k_gf_mux2.v\
96 ${SRS_PATH }/ rtl_up/m14k_glue.v\
97 ${SRS_PATH }/ rtl_up/m14k_ic.v\
98 ${SRS_PATH }/ rtl_up/m14k_ic_bistctl.v\
99 ${SRS_PATH }/ rtl_up/m14k_icc.v\

100 ${SRS_PATH }/ rtl_up/m14k_icc_mb_stub.v\
101 ${SRS_PATH }/ rtl_up/m14k_icc_parity_stub.v\
102 ${SRS_PATH }/ rtl_up/m14k_icc_spmb_stub.v\
103 ${SRS_PATH }/ rtl_up/m14k_icc_spstub.v\
104 ${SRS_PATH }/ rtl_up/m14k_icc_umips_stub.v\
105 ${SRS_PATH }/ rtl_up/m14k_ispram_ext_stub.v\
106 ${SRS_PATH }/ rtl_up/m14k_mdl.v\
107 ${SRS_PATH }/ rtl_up/m14k_mdl_add_simple.v\
108 ${SRS_PATH }/ rtl_up/m14k_mdl_ctl.v\
109 ${SRS_PATH }/ rtl_up/m14k_mdl_dp.v\
110 ${SRS_PATH }/ rtl_up/m14k_mmuc.v\
111 ${SRS_PATH }/ rtl_up/m14k_mpc.v\
112 ${SRS_PATH }/ rtl_up/m14k_mpc_ctl.v\
113 ${SRS_PATH }/ rtl_up/m14k_mpc_dec.v\
114 ${SRS_PATH }/ rtl_up/m14k_mpc_exc.v\
115 ${SRS_PATH }/ rtl_up/m14k_rf_reg.v\
116 ${SRS_PATH }/ rtl_up/m14k_rf_rngc.v\
117 ${SRS_PATH }/ rtl_up/m14k_rf_stub.v\
118 ${SRS_PATH }/ rtl_up/m14k_siu.v\
119 ${SRS_PATH }/ rtl_up/m14k_siu_int_sync.v\
120 ${SRS_PATH }/ rtl_up/m14k_spram_top.v\
121 ${SRS_PATH }/ rtl_up/m14k_ssram_sp_bw.v\
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122 ${SRS_PATH }/ rtl_up/m14k_tlb.v\
123 ${SRS_PATH }/ rtl_up/m14k_tlb_collector.v\
124 ${SRS_PATH }/ rtl_up/m14k_tlb_cpy.v\
125 ${SRS_PATH }/ rtl_up/m14k_tlb_ctl.v\
126 ${SRS_PATH }/ rtl_up/m14k_tlb_dtlb.v\
127 ${SRS_PATH }/ rtl_up/m14k_tlb_itlb.v\
128 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb1entry.v\
129 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb4entries.v\
130 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb16.v\
131 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb16entries.v\
132 ${SRS_PATH }/ rtl_up/m14k_tlb_utlb.v\
133 ${SRS_PATH }/ rtl_up/m14k_tlb_utlbentry.v\
134 ${SRS_PATH }/ rtl_up/m14k_top.v\
135 ${SRS_PATH }/ rtl_up/m14k_udi_stub.v\
136 ${SRS_PATH }/ rtl_up/mipsfpga_ahb.v\
137 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_gpio.v\
138 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_ram.v\
139 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_ram_reset.v\
140 ${SRS_PATH }/ rtl_up/mipsfpga_nexys4.v\
141 ${SRS_PATH }/ rtl_up/mipsfpga_sys.v\
142 ${SRS_PATH }/ rtl_up/mips_pib_stub.v\
143 ${SRS_PATH }/ rtl_up/mvp_cregister.v\
144 ${SRS_PATH }/ rtl_up/mvp_cregister_c.v\
145 ${SRS_PATH }/ rtl_up/mvp_cregister_ngc.v\
146 ${SRS_PATH }/ rtl_up/mvp_cregister_s.v\
147 ${SRS_PATH }/ rtl_up/mvp_cregister_wide.v\
148 ${SRS_PATH }/ rtl_up/mvp_cregister_wide_tlb.v\
149 ${SRS_PATH }/ rtl_up/mvp_cregister_wide_utlb.v\
150 ${SRS_PATH }/ rtl_up/mvp_latchn.v\
151 ${SRS_PATH }/ rtl_up/mvp_mux1hot_3.v\
152 ${SRS_PATH }/ rtl_up/mvp_mux1hot_4.v\
153 ${SRS_PATH }/ rtl_up/mvp_mux1hot_5.v\
154 ${SRS_PATH }/ rtl_up/mvp_mux1hot_6.v\
155 ${SRS_PATH }/ rtl_up/mvp_mux1hot_8.v\
156 ${SRS_PATH }/ rtl_up/mvp_mux1hot_9.v\
157 ${SRS_PATH }/ rtl_up/mvp_mux1hot_10.v\
158 ${SRS_PATH }/ rtl_up/mvp_mux1hot_13.v\
159 ${SRS_PATH }/ rtl_up/mvp_mux1hot_24.v\
160 ${SRS_PATH }/ rtl_up/mvp_mux2.v\
161 ${SRS_PATH }/ rtl_up/mvp_mux4.v\
162 ${SRS_PATH }/ rtl_up/mvp_mux8.v\
163 ${SRS_PATH }/ rtl_up/mvp_mux16.v\
164 ${SRS_PATH }/ rtl_up/mvp_register.v\
165 ${SRS_PATH }/ rtl_up/mvp_register_c.v\
166 ${SRS_PATH }/ rtl_up/mvp_register_ngc.v\
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167 ${SRS_PATH }/ rtl_up/mvp_register_s.v\
168 ${SRS_PATH }/ rtl_up/mvp_ucregister_wide.v\
169 ${SRS_PATH }/ rtl_up/sram_interface.v\
170 ${SRS_PATH }/ rtl_up/tagram_2k2way_xilinx.v\
171 ${SRS_PATH }/ rtl_up/segment7.v\
172

173 #${ SRS_PATH }/ rtl/ clk_wiz_0 / clk_wiz_0.v \
174 #${ SRS_PATH }/ rtl/ clk_wiz_0 / clk_wiz_0_clk_wiz.v \
175 #${ SRS_PATH }/ rtl/ clk_wiz_0 / clk_wiz_0_stub.v \
176

177

178

179 PKGS_RTL_syn_tb= \
180 ${SRS_PATH }/ rtl_up/dataram_2k2way_xilinx.v\
181 ${SRS_PATH }/ rtl_up/d_wsram_2k2way_xilinx.v\
182 ${SRS_PATH }/ rtl_up/ejtag_reset.v\
183 ${SRS_PATH }/ rtl_up/i_wsram_2k2way_xilinx.v\
184 ${SRS_PATH }/ rtl_up/m14k_alu_dsp_stub.v\
185 ${SRS_PATH }/ rtl_up/m14k_alu_shft_32bit.v\
186 ${SRS_PATH }/ rtl_up/m14k_bistctl.v\
187 ${SRS_PATH }/ rtl_up/m14k_cache_cmp.v\
188 ${SRS_PATH }/ rtl_up/m14k_cache_mux.v\
189 ${SRS_PATH }/ rtl_up/m14k_cdmmstub.v\
190 ${SRS_PATH }/ rtl_up/m14k_clockandlatch.v\
191 ${SRS_PATH }/ rtl_up/m14k_clock_buf.v\
192 ${SRS_PATH }/ rtl_up/m14k_clock_nogate.v\
193 ${SRS_PATH }/ rtl_up/m14k_clockxnorgate.v\
194 ${SRS_PATH }/ rtl_up/m14k_cop1_stub.v\
195 ${SRS_PATH }/ rtl_up/m14k_cop2_stub.v\
196 ${SRS_PATH }/ rtl_up/m14k_cp1_stub.v\
197 ${SRS_PATH }/ rtl_up/m14k_cp2_stub.v\
198 ${SRS_PATH }/ rtl_up/m14k_cpu.v\
199 ${SRS_PATH }/ rtl_up/m14k_cpz.v\
200 ${SRS_PATH }/ rtl_up/m14k_cpz_antitamper_stub.v\
201 ${SRS_PATH }/ rtl_up/m14k_cpz_eicoffset_stub.v\
202 ${SRS_PATH }/ rtl_up/m14k_cpz_guest_srs1.v\
203 ${SRS_PATH }/ rtl_up/m14k_cpz_guest_stub.v\
204 ${SRS_PATH }/ rtl_up/m14k_cpz_pc.v\
205 ${SRS_PATH }/ rtl_up/m14k_cpz_pc_top.v\
206 ${SRS_PATH }/ rtl_up/m14k_cpz_prid.v\
207 ${SRS_PATH }/ rtl_up/m14k_cpz_root_stub.v\
208 ${SRS_PATH }/ rtl_up/m14k_cpz_sps_stub.v\
209 ${SRS_PATH }/ rtl_up/m14k_cpz_srs1.v\
210 ${SRS_PATH }/ rtl_up/m14k_cpz_watch_stub.v\
211 ${SRS_PATH }/ rtl_up/m14k_cscramble_scanio_stub.v\
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212 ${SRS_PATH }/ rtl_up/m14k_cscramble_stub.v\
213 ${SRS_PATH }/ rtl_up/m14k_cscramble_tpl.v\
214 ${SRS_PATH }/ rtl_up/m14k_dc.v\
215 ${SRS_PATH }/ rtl_up/m14k_dc_bistctl.v\
216 ${SRS_PATH }/ rtl_up/m14k_dcc.v\
217 ${SRS_PATH }/ rtl_up/m14k_dcc_fb.v\
218 ${SRS_PATH }/ rtl_up/m14k_dcc_mb_stub.v\
219 ${SRS_PATH }/ rtl_up/m14k_dcc_parity_stub.v\
220 ${SRS_PATH }/ rtl_up/m14k_dcc_spmb_stub.v\
221 ${SRS_PATH }/ rtl_up/m14k_dcc_spstub.v\
222 ${SRS_PATH }/ rtl_up/m14k_dspram_ext_stub.v\
223 ${SRS_PATH }/ rtl_up/m14k_edp_add_simple.v\
224 ${SRS_PATH }/ rtl_up/m14k_edp_buf_misc.v\
225 ${SRS_PATH }/ rtl_up/m14k_edp_clz.v\
226 ${SRS_PATH }/ rtl_up/m14k_edp_clz_4b.v\
227 ${SRS_PATH }/ rtl_up/m14k_edp_clz_16b.v\
228 ${SRS_PATH }/ rtl_up/m14k_ejt.v\
229 ${SRS_PATH }/ rtl_up/m14k_ejt_and2.v\
230 ${SRS_PATH }/ rtl_up/m14k_ejt_area.v\
231 ${SRS_PATH }/ rtl_up/m14k_ejt_async_rec.v\
232 ${SRS_PATH }/ rtl_up/m14k_ejt_async_snd.v\
233 ${SRS_PATH }/ rtl_up/m14k_ejt_bus32mux2.v\
234 ${SRS_PATH }/ rtl_up/m14k_ejt_dbrk.v\
235 ${SRS_PATH }/ rtl_up/m14k_ejt_gate.v\
236 ${SRS_PATH }/ rtl_up/m14k_ejt_ibrk.v\
237 ${SRS_PATH }/ rtl_up/m14k_ejt_mux2.v\
238 ${SRS_PATH }/ rtl_up/m14k_ejt_pdttcb_stub.v\
239 ${SRS_PATH }/ rtl_up/m14k_ejt_tap.v\
240 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_dasamstub.v\
241 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_fdcstub.v\
242 ${SRS_PATH }/ rtl_up/m14k_ejt_tap_pcsamstub.v\
243 ${SRS_PATH }/ rtl_up/m14k_ejt_tck.v\
244 ${SRS_PATH }/ rtl_up/m14k_fpuclk1_nogate.v\
245 ${SRS_PATH }/ rtl_up/m14k_gf_mux2.v\
246 ${SRS_PATH }/ rtl_up/m14k_glue.v\
247 ${SRS_PATH }/ rtl_up/m14k_ic.v\
248 ${SRS_PATH }/ rtl_up/m14k_ic_bistctl.v\
249 ${SRS_PATH }/ rtl_up/m14k_icc_mb_stub.v\
250 ${SRS_PATH }/ rtl_up/m14k_icc_parity_stub.v\
251 ${SRS_PATH }/ rtl_up/m14k_icc_spmb_stub.v\
252 ${SRS_PATH }/ rtl_up/m14k_icc_spstub.v\
253 ${SRS_PATH }/ rtl_up/m14k_icc_umips_stub.v\
254 ${SRS_PATH }/ rtl_up/m14k_ispram_ext_stub.v\
255 ${SRS_PATH }/ rtl_up/m14k_mdl.v\
256 ${SRS_PATH }/ rtl_up/m14k_mdl_add_simple.v\
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257 ${SRS_PATH }/ rtl_up/m14k_mdl_ctl.v\
258 ${SRS_PATH }/ rtl_up/m14k_mdl_dp.v\
259 ${SRS_PATH }/ rtl_up/m14k_mmuc.v\
260 ${SRS_PATH }/ rtl_up/m14k_mpc.v\
261 ${SRS_PATH }/ rtl_up/m14k_mpc_ctl.v\
262 ${SRS_PATH }/ rtl_up/m14k_mpc_dec.v\
263 ${SRS_PATH }/ rtl_up/m14k_mpc_exc.v\
264 ${SRS_PATH }/ rtl_up/m14k_rf_reg.v\
265 ${SRS_PATH }/ rtl_up/m14k_rf_rngc.v\
266 ${SRS_PATH }/ rtl_up/m14k_rf_stub.v\
267 ${SRS_PATH }/ rtl_up/m14k_siu.v\
268 ${SRS_PATH }/ rtl_up/m14k_siu_int_sync.v\
269 ${SRS_PATH }/ rtl_up/m14k_spram_top.v\
270 ${SRS_PATH }/ rtl_up/m14k_ssram_sp_bw.v\
271 ${SRS_PATH }/ rtl_up/m14k_tlb.v\
272 ${SRS_PATH }/ rtl_up/m14k_tlb_collector.v\
273 ${SRS_PATH }/ rtl_up/m14k_tlb_cpy.v\
274 ${SRS_PATH }/ rtl_up/m14k_tlb_ctl.v\
275 ${SRS_PATH }/ rtl_up/m14k_tlb_dtlb.v\
276 ${SRS_PATH }/ rtl_up/m14k_tlb_itlb.v\
277 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb1entry.v\
278 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb4entries.v\
279 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb16.v\
280 ${SRS_PATH }/ rtl_up/m14k_tlb_jtlb16entries.v\
281 ${SRS_PATH }/ rtl_up/m14k_tlb_utlb.v\
282 ${SRS_PATH }/ rtl_up/m14k_tlb_utlbentry.v\
283 ${SRS_PATH }/ rtl_up/m14k_top.v\
284 ${SRS_PATH }/ rtl_up/m14k_udi_stub.v\
285 ${SRS_PATH }/ rtl_up/mipsfpga_ahb.v\
286 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_gpio.v\
287 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_ram.v\
288 ${SRS_PATH }/ rtl_up/mipsfpga_ahb_ram_reset.v\
289 ${SRS_PATH }/ rtl_up/mipsfpga_sys.v\
290 ${SRS_PATH }/ rtl_up/mips_pib_stub.v\
291 ${SRS_PATH }/ rtl_up/mvp_cregister.v\
292 ${SRS_PATH }/ rtl_up/mvp_cregister_c.v\
293 ${SRS_PATH }/ rtl_up/mvp_cregister_ngc.v\
294 ${SRS_PATH }/ rtl_up/mvp_cregister_s.v\
295 ${SRS_PATH }/ rtl_up/mvp_cregister_wide.v\
296 ${SRS_PATH }/ rtl_up/mvp_cregister_wide_tlb.v\
297 ${SRS_PATH }/ rtl_up/mvp_cregister_wide_utlb.v\
298 ${SRS_PATH }/ rtl_up/mvp_latchn.v\
299 ${SRS_PATH }/ rtl_up/mvp_mux1hot_3.v\
300 ${SRS_PATH }/ rtl_up/mvp_mux1hot_4.v\
301 ${SRS_PATH }/ rtl_up/mvp_mux1hot_5.v\
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302 ${SRS_PATH }/ rtl_up/mvp_mux1hot_6.v\
303 ${SRS_PATH }/ rtl_up/mvp_mux1hot_8.v\
304 ${SRS_PATH }/ rtl_up/mvp_mux1hot_9.v\
305 ${SRS_PATH }/ rtl_up/mvp_mux1hot_10.v\
306 ${SRS_PATH }/ rtl_up/mvp_mux1hot_13.v\
307 ${SRS_PATH }/ rtl_up/mvp_mux1hot_24.v\
308 ${SRS_PATH }/ rtl_up/mvp_mux2.v\
309 ${SRS_PATH }/ rtl_up/mvp_mux4.v\
310 ${SRS_PATH }/ rtl_up/mvp_mux8.v\
311 ${SRS_PATH }/ rtl_up/mvp_mux16.v\
312 ${SRS_PATH }/ rtl_up/mvp_register.v\
313 ${SRS_PATH }/ rtl_up/mvp_register_c.v\
314 ${SRS_PATH }/ rtl_up/mvp_register_ngc.v\
315 ${SRS_PATH }/ rtl_up/mvp_register_s.v\
316 ${SRS_PATH }/ rtl_up/mvp_ucregister_wide.v\
317 ${SRS_PATH }/ rtl_up/sram_interface.v\
318 ${SRS_PATH }/ rtl_up/tagram_2k2way_xilinx.v\
319 ${SRS_PATH }/ rtl_up/mipsfpga_nexys4.v\
320 ${SRS_PATH }/ rtl_up/segment7.v\
321 ${SRS_PATH }/ rtl_up/m14k_biu.v\
322 ${SRS_PATH }/ rtl_up/m14k_edp.v\
323 ${SRS_PATH }/ rtl_up/m14k_ejt_brk21.v\
324 ${SRS_PATH }/ rtl_up/m14k_icc.v\
325 ${SRS_PATH }/ rtl_up/m14k_core.v\
326

327

328

329

330 PKGS_RTL_triplicate = \
331

332

333 PKGS_RTL_do_not_triplicate = \
334

335

336 PKGS_MODEL = \
337

338

339 PKGS_TMR_EL = \
340

341

342 RM = rm -rf
343

344 sim_rtl :
345 @echo "Starting␣simulation..."
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346 xrun -sv -gui -l ../sim/logs/funciton_run.log -access +
rwc ${PKGS_RTL_syn_tb} ${PKGS_TB_NEXYS_READ} ${
PKGS_RTL_memory_tb} -incdir ${SRS_PATH }/ rtl_up
-timescale 1ns/10ps

347 #xrun -sv -gui -l ../sim/logs/funciton_run.log -access +
rwc ${PKGS_RTL_syn_tb} ${PKGS_TB_NEXYS} ${
PKGS_RTL_memory_tb} -incdir ${SRS_PATH }/ rtl_up
-xverbose -timescale 1ns/1ps

348

349

350 ##
351

352

353 sim_gls :
354 @echo "Starting␣simulation..."
355 xrun -sv -gui -l ../sim/logs/run_post_pnr_sim.log -access

+rwc ../output/export.v /eda/kits/TSMC/CERN_C65LP/
digital/Front_End/verilog/tcbn65lp_200a/tcbn65lp.v ${
PKGS_TB_NEXYS_READ} ${PKGS_RTL_memory_tb} -timescale 1
ns/10ps -mess -ntc_level 2 -ntc_verbose -sdf_nopathedge
-clean -dfile ../sim/dfile.txt -input ../sim/scripts/

dfile.tcl -clean -sdf_cmd_file ../sim/scripts/
sdf_typ.cmd -clean -input ../sim/scripts/
export_saif_shm_typ.tcl

356

357 sim_gls_loop :
358 @echo "Starting␣simulation..."
359 xrun -sv -gui -l ../sim/logs/run_post_pnr_sim_loop.log

-access +rwc ../output/export.v /eda/kits/TSMC/
CERN_C65LP/digital/Front_End/verilog/tcbn65lp_200a/
tcbn65lp.v ${PKGS_TB_NEXYS_loop} ${PKGS_RTL_memory_tb}
-timescale 1ns/10ps -mess -ntc_level 2 -ntc_verbose
-sdf_nopathedge -clean -dfile ../sim/dfile.txt -input
../sim/scriptsloop/dfile.tcl -clean -sdf_cmd_file ../
sim/scriptsloop/sdf_typ.cmd -clean -input ../sim/
scriptsloop/export_saif_shm_typ.tcl

360

361 #
362 ## xminit_log ../sim/logs/ init_list.log
363 # -xminitialize 0 -input ../sim/logs/ init_list.log
364 # -input ../sim/ scripts / deposit.tcl
365 # -dfile ../sim/ dfile.txt -input ../sim/ scripts / dfile.tcl
366 # -setenv SHM_RESET_DEFAULTS=TRUE
367 # -input ../sim/ scripts / deposit_new.tcl
368
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369 sim_tmr :
370 @echo "Starting␣simulation..."
371 xrun -sv -gui -l run.log -access +rwc ${PKGS_MODEL} ${

PKGS_RTL_syn} ${PKGS_TB} -timescale 10ps/10ps
372

373 try :
374 @echo "Starting␣simulation..."
375 irun -sv -c -l run.log -access +rwc ${PKGS_RTL_syn_tb} ${

PKGS_TB} ${PKGS_RTL_memory_tb} -incdir ${SRS_PATH }/
rtl_up -timescale 10ps/10ps

376

377 clean:
378 @echo cleaning old simulation files and libraries...
379 @ -$(RM) INCA_libs plib csrc *.out *.err simv* work

vlog.opt *.bak *.log *.dat *.txt .simvision ncsim*
*.vpd transcript \

380 waves.shm *.wlf mylib lib DVEfiles ucli.key irun.key
modelsim.ini *.vstf .restart* urgReport cov_work *.so
vc_hdrs.h

381 irun -clean
382 @echo done.
383

384 triplicate:
385 @echo "Starting␣triplication..."
386 tmrg --no-common-definitions ${PKGS_TMR_EL} ${

PKGS_RTL_triplicate}
387 @mv ./*.*v ../tmr/
388 @cp ${PKGS_RTL_do_not_triplicate} ./../tmr/
389 touch ./../tmr/TMRdef..v \
390 @echo "\‘define␣TMR" > ./../tmr/TMRdef..v \
391 @echo "Done!"
392

393 checktmr:
394 @echo "Checking␣triplication␣result..."
395 CheckTMR ${SRS_PATH }/rtl/ ${SRS_PATH }/tmr/
396

397 .EXPORT_ALL_VARIABLES:
398

399 export designpath=${DESIGNPATH}
400 export PKGS_RTL_syn;
401

402 syn:
403 @echo "Starting␣Synthesis..."
404 #genus -gui -legacy_gui
405 genus -files ../syn/scripts/run_all.tcl
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406

407 genus:
408 @echo "Starting␣Synthesis␣Tool..."
409 genus -gui
410

411 pnr:
412 @echo "Starting␣Place␣and␣Route..."
413 innovus -stylus -no_gui -files ../pnr/scripts /0

_run_all.tcl
414

415 innovus:
416 @echo "Starting␣Place␣and␣Route..."
417 innovus -stylus
418 power:
419 @echo "Starting␣Voltus␣Power␣Simulation..."
420 voltus -vtsxl -stylus -files ${DESIGNPATH }/ power/scripts /0

_run_all.tcl
421 powerloop:
422 @echo "Starting␣Voltus␣Power␣Simulation..."
423 voltus -vtsxl -stylus -files ${DESIGNPATH }/ power/

scriptsloop /0 _run_all.tcl

Listing 48: Script Make
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