@article{BongertGellerPennekamp2010, author = {Bongert, Markus and Geller, Marius and Pennekamp, Werner}, title = {Simulation der Einfl{\"u}sse von Klappenprothesen auf die Blutstr{\"o}mung mittels eines individuellen Modells der thorakalen Aorta}, series = {CAME : Computer aided medical engineering}, volume = {1 (2010)}, number = {1}, issn = {2190-0698}, pages = {6}, year = {2010}, language = {de} } @article{BongertGellerPennekamp2014, author = {Bongert, Markus and Geller, Marius and Pennekamp, Werner}, title = {In silico model of a patient specific Aorta using 4D-MRI data simulating the hemodynamic effects of mechanical aortic valve}, series = {Biomedical engineering/Biomedizinische Technik}, volume = {59 (2014)}, number = {s1}, issn = {1862-278X}, pages = {19}, year = {2014}, language = {en} } @article{BongertGellerStrauch2015, author = {Bongert, Markus and Geller, Marius and Strauch, J.}, title = {Untersuchung der Rezirkulation der Blutstr{\"o}mung im rechten Vorhof beim Einsatz einer VV-ECMO}, series = {CAME : Computer aided medical engineering}, volume = {6 (2015)}, number = {1}, issn = {2190-0698}, pages = {7}, year = {2015}, language = {de} } @article{GellerSchemmannKluck2012, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Gleiten nur zum Schein}, series = {Antriebstechnik}, number = {11}, issn = {0722-8546}, pages = {4}, year = {2012}, language = {de} } @article{GellerSchemmannKluck2014, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Simulation of radial journal bearings using the FSI approach and a multi-phase model with integrated cavitation}, series = {Progress in computational fluid dynamics : an international journal}, volume = {14 (2014)}, number = {1}, issn = {1468-4349}, pages = {1}, year = {2014}, language = {en} } @article{GellerSchemmannKluck2012, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Robustness evaluation and RDO of a centrifugal compressor impeller}, series = {RDO-Journal}, number = {1}, pages = {2}, year = {2012}, language = {en} } @article{GellerKluckSchemmann2012, author = {Geller, Marius and Kluck, Norbert and Schemmann, Christoph}, title = {Simulation radialer Gleitlager}, series = {Economic engineering : das Wirtschaftsfachmagazin f{\"u}r Ingenieure}, number = {4}, issn = {1866-5004}, pages = {3}, year = {2012}, language = {de} } @incollection{GellerSchemmann2012, author = {Geller, Marius and Schemmann, Christoph}, title = {Simulation von radialen Verdichterlaufr{\"a}dern}, series = {Tagungsband 10. Tagung "Technische Diagnostik 2012" : am 25./26. Oktober 2012 in Merseburg}, publisher = {Selbstverlag, An-Institut Fluid- und Pumpentechnik}, address = {Merseburg}, pages = {6}, year = {2012}, language = {de} } @incollection{GellerSchemmannKluck2012, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Simulation of radial tilting pad journal bearings in consideration of fluid-structure-interaction and a cavitating multiphase flow}, series = {NAFEMS European conference multiphysics simulation 2012 : 16-17 October 2012, Frankfurt, Germany}, publisher = {NAFEMS GmbH}, address = {Bernau am Chiemsee}, pages = {6}, year = {2012}, language = {en} } @incollection{GellerKluckRall2014, author = {Geller, Marius and Kluck, Norbert and Rall, Markus}, title = {Thermisch transiente Geb{\"a}udesimulation mittels CFD-Analyse unter Ber{\"u}cksichtigung verschiedener Baumaterialien und der Sonneneinstrahlung}, series = {Smart energy 2014 : Energiewende quer gedacht}, publisher = {H{\"u}lsbusch}, address = {Gl{\"u}ckstadt}, pages = {11}, year = {2014}, language = {de} } @incollection{RybackiGellerSchemmann2012, author = {Rybacki, A. and Geller, Marius and Schemmann, Christoph}, title = {Geometrieoptimierung eines Radialkompressorlaufrades im Hinblick auf CFD- und FEM-relevante Zielgr{\"o}ßen mit Hilfe von automatisierten Optimierungsmethoden}, series = {NAFEMS deutschsprachige Konferenz '12 : 8.-9. Mai, Bamberg, Deutschland ; Berechnung und Simulation - Anwednungen, Entwicklungen, Trends}, publisher = {NAFEMS Deutschland, {\"O}sterreich, Schweiz GmbH}, address = {Bernau}, year = {2012}, language = {de} } @incollection{BongertGellerPennekamp2010, author = {Bongert, Markus and Geller, Marius and Pennekamp, Werner}, title = {Numerical simulation of hemodynamic in the patient-specific aorta after aortic valve replacement based on MRI-data}, series = {Horizons in world cardiovascular research : Volume 1}, publisher = {Nova Biomedical Books}, address = {New York}, year = {2010}, language = {en} } @article{GellerSchemmannKluck2012, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Den Turbo einschalten}, series = {CADFEM journal}, number = {2}, pages = {3}, year = {2012}, language = {de} } @incollection{LattnerGellerKluck2022, author = {Lattner, Yannick and Geller, Marius and Kluck, Norbert}, title = {Generierung und Parametrisierung von Radialverdichterkennlinien auf Basis neuronaler Netze}, series = {NAFEMS DACH Regionalkonferenz - Conference Proceedings}, volume = {2022}, isbn = {978-1-910643-86-0}, pages = {287 -- 292}, year = {2022}, abstract = {Die Optimierung von Radialverdichtern in Hinblick auf Ressourceneffizienz nimmt heutzutage einen immer gr{\"o}ßeren Stellenwert ein. Die kennlinien- und auch kennfeldbasierte Optimierung l{\"o}st dabei die betriebspunktbasierte Optimierung von Radialverdichterlaufr{\"a}dern immer mehr ab. Moderne komplexe numerische Simulationstools zur Str{\"o}mungsanalyse und Softwaretools aus dem Bereich der Optimierung auf Basis von Design-of-Experiments (DoE) werden in immer gr{\"o}ßerem Maße in den Prozess eingebunden. Die sich in den letzten Jahren weiterentwickelte Hardware erlaubt zus{\"a}tzlich immer komplexere Rechenmodelle in immer k{\"u}rzerer Zeit zu bearbeiten. Die vorliegende Arbeit befasst sich genau mit diesem Thema. Ausgangspunkt des Optimierungsprozesses sind eine Vielzahl von zuf{\"a}llig generierten Maschinendesigns, die unter Einhaltung von str{\"o}mungsabh{\"a}ngigen und maschinenabh{\"a}ngigen Kennzahlen automatisch erstellt wurden. Die im weiteren Prozessablauf gestalteten Simulationen der einzelnen Designs, die aufgrund der Bauweise und der Struktur ihrer Kennfelder grob unterschiedliche Konvergenzen und Abbruchkriterien (Pump- und Schluckgrenze) aufweisen, sind durch speziell implementierte physikbasierte Indikatoren ausfallsicher handhabbar. Die detaillierten, aber unterschiedlichen Kennlinien des Wirkungsgrades und des Druckverh{\"a}ltnisses in Abh{\"a}ngigkeit vom Massenstrom der einzelnen Simulationen sind zur weiteren Verwendung in der Optimierungsphase mithilfe von neuronalen Netzen trainiert worden. Der Aufbau des Metamodells zur eigentlichen Optimierung ist gekennzeichnet durch die Reduktion der vorhandenen Parameter unter Verwendung von B{\´e}zier-Splines, was in der vorliegenden Arbeit zu einer Reduzierung auf insgesamt lediglich 13 Parameter f{\"u}r beide betrachteten Kennlinien und ihre signifikanten Punkte f{\"u}hrt. In der nachfolgenden Optimierung kann das Metamodell zur Identifikation eines Designs mit anwenderspezifischen Zielen und Randbedingungen f{\"u}r Kennlinienbreite, Druckverh{\"a}ltnisbereich und Wirkungsgrad genutzt werden. F{\"u}r dieses Optimal-Design kann anschließend ohne weitere Simulationen die Kennlinie mit B{\´e}zier-Splines approximiert werden. Der Anwender ist somit in der Lage, bei der Optimierung von Radialverdichtern sowohl den Betriebspunkt als auch die Kennliniencharakteristika wie Pump- und Schluckgrenze sowie Druckverh{\"a}ltnisse jenseits des Betriebspunktes zu erfassen und so zus{\"a}tzliche Designevaluationen und Iterationsschleifen zu vermeiden.}, language = {de} } @incollection{GellerKluck2017, author = {Geller, Marius and Kluck, Norbert}, title = {"Smart Energy" mit "Computational Fluid Dynamics"}, series = {Smart Energy 2017 : Dezentrale Systeme — Wie smart ist die sch{\"o}ne neue Energiewelt?}, publisher = {vwh Verlag Werner H{\"u}lsbusch}, address = {Gl{\"u}ckstadt}, pages = {66 -- 79}, year = {2017}, language = {de} } @incollection{GellerSchemmannKluck2017, author = {Geller, Marius and Schemmann, Christoph and Kluck, Norbert}, title = {Optimization of the operation characteristic of a highly stressed centrifugal compressor impeller using automated optimization and metamodeling methods}, series = {Proceedings of the ASME ... ; Volume 2, C ; Noise and innovative noise reduction; radial turbomachinery aerodynamics; multidisciplinary design approaches, optimization and uncertainty quantification}, publisher = {The American Society of Mechanical Engineers}, address = {New York}, year = {2017}, language = {en} } @article{BongertGehronGelleretal.2018, author = {Bongert, Markus and Gehron, Johannes and Geller, Marius and B{\"o}ning, A. and Grieshaber, Philippe}, title = {Bernoulli effect aggravates leg malperfusion during extracorporeal life support with femoral arterial cannulation}, series = {The Thoracic and Cardiovascular Surgeon}, volume = {2018}, number = {S01}, issn = {0040-6384}, year = {2018}, language = {en} } @article{BongertGellerPennekampetal.2019, author = {Bongert, Markus and Geller, Marius and Pennekamp, Werner and Volkmar, Nicolas}, title = {Simulation of personalised haemodynamics by various mounting positions of a prosthetic valve using computational fluid dynamics}, series = {Biomedical engineering/Biomedizinische Technik}, volume = {64 (2019)}, number = {2}, issn = {1862-278X}, pages = {147 -- 156}, year = {2019}, language = {en} } @incollection{SchemmannGellerKluck2017, author = {Schemmann, Christoph and Geller, Marius and Kluck, Norbert}, title = {Identification of loss model parameters for highly loaded centrifugal impellers}, series = {Proceedings : 15th International Probabilistic Workshop \& 10th Dresdner Probabilistic Workshop, 27th-29th September 2017, Dresden, Germany}, publisher = {TUDpress}, address = {Dresden}, year = {2017}, language = {en} } @article{W{\"u}stBongertGelleretal.2019, author = {W{\"u}st, Jan and Bongert, Markus and Geller, Marius and Strauch, Justus and Buchwald, Dirk}, title = {In-silico-Studie der Einfl{\"u}sse der kontundierenden Geometrie auf die Blutstr{\"o}mung hinter einer Schlauchklemme}, series = {Kardiotechnik}, volume = {28 (2019)}, number = {Supplement 01}, issn = {0941-2670}, pages = {9 -- 9}, year = {2019}, language = {de} } @unpublished{LattnerGellerKluck2023, author = {Lattner, Yannick and Geller, Marius and Kluck, Norbert}, title = {Efficiency Approximation of Centrifugal Compressors in the Cordier Diagram}, doi = {10.26205/opus-3366}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-33661}, pages = {12}, year = {2023}, abstract = {We present a simulation data-based efficiency approximation for radial turbocompressors, which is implemented in the well-known Cordier diagram. A sophisticated CAE workflow is used to calculate the operational characteristics of 50 machine designs with 50 impeller geometry variations each. A Kriging-based surrogate model is trained to approximate the efficiency of any machine designs' best geometry design. The models are implemented into a machine design workflow. As a result, duty-specific Cordier lines are introduced. They are automatically generated for a set of machine design parameters. The efficiency of the designs along the duty-specific Cordier lines is approximated. Using optimization techniques, an optimal compressor design for the given duty on every specific Cordier line may be identified. This highly increases the amount of information available in the early design stages for radial turbocompressors.}, language = {en} } @article{LattnerGeller2023, author = {Lattner, Yannick and Geller, Marius}, title = {Radial Turbocompressor Chord Length Approximation for the Reynold's Number Calculation}, doi = {10.26205/opus-3335}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-33351}, year = {2023}, abstract = {We present an approximation model for the chord length of radial turbocompressors. The model enables the calculation of a compressor's chord Reynold's number during the machine design process. The chord Reynold's number is shown to be the most accurate representation of the fluid dynamic properties inside the radial turbocompressor's impeller. It — however — requires the computation of the chord length, which is only available after defining the final impeller geometry. The method presenting in this paper only employs the compressors principal dimensions to approximate the chord length. The chord is modelled using a B{\´e}zier spline and quarter ellipse. This enables the earlier use of the chord Reynold's number during the machine design process of radial turbocompressors.}, language = {en} }