@phdthesis{Koers2024, type = {Master Thesis}, author = {Koers, Lars}, title = {Setup of test environments based on a Xilinx Zynq SoC for measuring the leakage current and for radiation qualifcation of SRAM based FPGAs}, doi = {10.26205/opus-3803}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-38039}, pages = {136}, year = {2024}, abstract = {This thesis discusses the development of test environments using Xilinx Zynq System on Chip (SoC) for measuring leakage currents and radiation qualification of Static Random Access Memory (SRAM) based Field Programmable Gate Arrays (FPGAs) at European Organisation for Nuclear Research (CERN). The effects of radiation on electronic components are explained, followed by an introduction to the FPGAs used. The GateMate FPGAs leakage current is measured in its application area with respect to temperature and core voltages. A comparable testing environment is used from the tester to the tested device, as it will later be used at CERN. The GateMate is being prepared in this setup for the finalization of radiation qualification at CERN, to be transferred later. For this purpose, the basic tests are explained and the outstanding tests are then carried out. The Lattice iCE40 UltraLite FPGA is used in an initial application test to determine its suitability for further radiation qualification tests at CERN. The analysis and presentation of the test results are followed by a summary and outlook.}, language = {en} } @phdthesis{M{\"u}ller-Baumgart2024, type = {Master Thesis}, author = {M{\"u}ller-Baumgart, Ulf}, title = {Creation of general representation of a local power grid as a basis for an embedding of electrical devices}, doi = {10.26205/opus-3795}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-37955}, pages = {96}, year = {2024}, language = {en} } @phdthesis{Alaee2024, type = {Master Thesis}, author = {Alaee, Ladan}, title = {Design and Implementation of a Mixed-Signal Processing Chain for the Optical Determination of Rotation Angles}, doi = {10.26205/opus-3793}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-37932}, pages = {264}, year = {2024}, abstract = {The aim of this master thesis is the design and implementation of mixed-signal processing chain for the optical determination of rotation angles by means of four sensors implemented as photodiodes with integrated polarization filters and a high-precision CORDIC hardware design implemented on an FPGA in Verilog. Furthermore, a light source and a polarizer are integrated in the measurement setup which is configured using an QT application.}, language = {en} }