@phdthesis{Koitka2023, author = {Koitka, Sven Steffen}, title = {Vollautomatische Knochenalterbestimmung auf p{\"a}diatrischen R{\"o}ntgenbildern nach Vorbild der radiologischen Vorgehensweise}, pages = {59}, year = {2023}, language = {de} } @phdthesis{Garc{\´i}a Rodr{\´i}guez2023, type = {Master Thesis}, author = {Garc{\´i}a Rodr{\´i}guez, Saul}, title = {Design and FPGA implementation of a highly resource-efficient AES-256 encryption and decryption engine}, doi = {10.26205/opus-3747}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-37471}, pages = {263}, year = {2023}, abstract = {Growing demand for security in a wide range of fields gives raise to research for more efficient and modern methods. Additionally, the increase of systems that are deployed on hardware requires security to be embedded in small area to protect intellectual property, hardware, and integrity and confidentially of sensible data. Therefore, in this work a design and FPGA implementation of a highly resource-efficient AES-256 encryption and decryption engine is presented, as well as its comparison with state-of-the-art designs. The design shows a reduction in the resources used due to its architecture to reuse hardware throughout all the processing. The design is implemented on a Xilinx Artix-7 FPGA.}, language = {en} } @phdthesis{Sarangi2023, type = {Master Thesis}, author = {Sarangi, Jitikantha}, title = {Digital Calibration, Closed Loop Regulation and Implementation of Digital Debugging Features for the Delay Asymmetry Compensation Logic of a 3D Polarization Camera Based on Time-of-Flight Principle}, publisher = {Fachhochschule Dortmund}, address = {Dortmund}, doi = {10.26205/opus-3732}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-37323}, pages = {107}, year = {2023}, abstract = {The work presented in this thesis deals with the distance measurement aspect of a 3D Polarization ToF camera for automotive applications that uses a Time-to-Digital Converter (TDC) to measure the time interval between the emission of light from a source and its reception. Based on the measurement of the time interval, distance can be calculated by applying the equation of motion. In application, achieving an exact distance measurement is quite strenuous because the operating conditions of the design are susceptible to change due to environmental factors. Therefore, to achieve accuracy in distance measurement, the time interval between the emission and reception of light must be measured precisely. For this purpose, a delay asymmetry compensation logic is developed. This thesis elaborates the addition of debugging features, redesign of some components, digital calibration approach and the entire testbench environment of the delay asymmetry compensation logic. It also sheds light on the implementation of the designed logic for its successful realisation in real hardware. Lastly, it concludes by narrating future prospects and further scopes of development.}, language = {en} }