@article{LattnerGeller2023, author = {Yannick Lattner and Marius Geller}, title = {Radial Turbocompressor Chord Length Approximation for the Reynold's Number Calculation}, doi = {10.26205/opus-3335}, url = {https://nbn-resolving.org/urn:nbn:de:hbz:dm13-33351}, year = {2023}, abstract = {We present an approximation model for the chord length of radial turbocompressors. The model enables the calculation of a compressor's chord Reynold's number during the machine design process. The chord Reynold's number is shown to be the most accurate representation of the fluid dynamic properties inside the radial turbocompressor's impeller. It — however — requires the computation of the chord length, which is only available after defining the final impeller geometry. The method presenting in this paper only employs the compressors principal dimensions to approximate the chord length. The chord is modelled using a B{\´e}zier spline and quarter ellipse. This enables the earlier use of the chord Reynold's number during the machine design process of radial turbocompressors.}, language = {en} }